![最基本的图形--点和线(提高)知识讲解第1页](http://img-preview.51jiaoxi.com/2/3/16076783/0-1723979989026/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![最基本的图形--点和线(提高)知识讲解第2页](http://img-preview.51jiaoxi.com/2/3/16076783/0-1723979989089/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![最基本的图形--点和线(提高)知识讲解第3页](http://img-preview.51jiaoxi.com/2/3/16076783/0-1723979989131/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
华师大版七年级上册1 点和线导学案
展开
这是一份华师大版七年级上册1 点和线导学案,共8页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
【学习目标】
1. 理解点和线是最基本的图形;
2.在现实情境中进一步理解线段、射线、直线,并会用不同的方式表示;
3. 通过操作活动,了解“两点确定一条直线”的几何事实,积累数学活动经验;
4. 能够运用几何事实解释和解决具体情境中的实际问题;
5. 通过从事观察、比较、概括等活动,发展抽象思维能力和有条理的数学表达能力.
【要点梳理】
要点一、点、线、面、体
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.
要点二、线段、射线、直线的概念及表示方法
1.概念:一根拉紧的绳子、一根竹竿、人行横道线都给我们以线段的形象,如果把“线段”作为最简单、最基本原始概念,则用“线段”定义射线和直线如下:
(1)把线段向一方无限延伸所形成的图形叫做射线.
(2)把线段向两方无限延伸所形成的图形叫做直线.
要点诠释:
(1)线段有两个端点,可以度量,可以比较长短.
(2)射线只向一方无限延伸,有一个端点,不能度量,不能比较大小.
(3)直线是向两方无限延伸的,无端点,不可度量,不能比较大小.
(4)线段、射线、直线都没有粗细.
2.表示方法:如图1、图2、图3,线段、射线、直线的表示方法都有两种:它们都可以用两个大写字母表示,也可以一个小写字母表示.
要点诠释:
(1)从表示方法上看,虽然它们都可以用一个小写字母表示,也可以用两个大写字母表示,但直线取得是直线上任意两点的字母,线段用的是两个端点的字母,射线用的是一个端点和任意一点的字母,而直线和线段的两个大写字母没有顺序之分,但射线的两个大写字母有顺序之分,第一个大写字母必须是表示端点.即端点相同,而延伸方向不同,表示不同的射线.如下图4中射线OA,射线OB是不同的射线;
图4
端点相同且延伸方向也相同的射线,表示同一条射线.如下图5中射线OA、射线OB、射线OC都表示同一条射线.
图5
(2)表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样.
3.线段、射线、直线的区别与联系
要点三、直线、线段的基本性质
1. 直线的性质:经过两点有一条直线,并且只有一条直线.即两点确定一条直线.
要点诠释:
(1)点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点.如图6中,点O在直线l上,也可以说成是直线l经过点O;
②点在直线外,或者说直线不经过这个点.如图6中,点P在直线l外,也可以说直线l不经过点P.
(2)两条不同的直线相交只有一个交点.
2.线段的基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.
如图7所示,在A,B两点所连的线中,线段AB的长度是最短的.
图7
要点诠释:
(1)连接两点间的线段的长度,叫做这两点的距离.
(2)两条线段可能无公共点,可能有一个公共点,也可能有无穷多个公共点.
要点四、线段的长短比较
1. “作一条线段等于已知线段”的两种方法:
法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.
法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a的长度,再画一条等于这个长度的线段.
要点诠释:几何中连结两点,即画出以这两点为端点的线段.
2.线段的比较:
(1)度量法:用刻度尺量出两条线段的长度,再比较长短.
(2)叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:
要点诠释:类似于数,线段也可以相加减.
3.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,点C是线段AB的中点,则,或AB=2AC=2BC.
要点诠释:若点C是线段AB的中点,则点C一定在线段AB上.
【典型例题】
类型一、点、线、面、体
1.8世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:
(1)根据上面多面体模型,完成表格中的空格:
你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______ _;
(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是________;
(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值.
【思路点拨】根据四面体、长方体、正八面体,正十二面体的顶点数、面数和棱数,总结出顶点数(v)、面数(F)、棱数(E)之间存在的关系式,再用这个关系式解答后面的问题.
【答案与解析】
解:(1)6, 6, V+F-E=2;
(2)20;
(3)这个多面体的面数为x+y,棱数为条,
根据V+F-E=2可得24+(x+y)-36=2,
∴ x+y=14.
【总结升华】欧拉公式:V(顶点数)+F(面数)-E(棱数)=2
举一反三:
【变式】如图把一个圆绕虚线旋转一周,得到的几何体是( )
A. B. C. D.
【答案】B
类型二、线段、射线、直线的概念及表示方法
2.如图所示,指出图中的直线、射线和线段.
【思路点拨】从图上看,A、D、F分别是线段CB、BC、BE的延长线上的点,也就是说,A、D、F三点的位置并不是完全确定的.此时,我们也就能分清楚图中的直线、射线和线段了.
【答案与解析】
解:直线有一条:直线AD;
射线有六条:射线BA、射线BD、射线CA、射线CD、射线BF、射线EF;
线段有三条:线段BC、线段BE、线段CE.
【总结升华】在表示线段和直线时,两个大写字母的顺序可以颠倒.然而,在叙述线段的延长线的时候,表示线段的两个大写字母的顺序就不能颠倒了,因为线段向一方延伸后就形成了射线(延长部分已不再是线段本身了),而表示射线的两个大写字母的顺序是不能颠倒的,只能用第一个字母表示射线的端点,第二个字母表示射线方向上的任一点.
举一反三:
【高清课堂:直线、射线、线段397363 拓展4】
【变式】两条不同的直线,要么有一个公共点,要么没有公共点,不能有两个公共点. 这是为什么?画图说明.
【答案】
解:
∵过两点有且只有一条直线.(或两点确定一条直线.)
∴两条不同的直线,要么有一个公共点,如图(1);要么没有公共点,如图(2);不能有两个公共点.
类型三、线段、射线、直线有关作图
3.( 春•高青县期中)已知平面上四点A、B、C、D,如图:
(1)画直线AD;
(2)画射线BC,与AD相交于O;
(3)连结AC、BD相交于点F.
【思路点拨】(1)画直线AD,连接AD并向两方无限延长;(2)画射线BC,以B为端点向BC方向延长交AD于点O;(3)连接各点,其交点即为点F.
【答案与解析】
解:如图所示:
【总结升华】本题主要考查直线、射线、线段的认识,掌握直线、射线、线段的特点是解题的关键.
举一反三:
【变式1】下列说法正确的有 ( )
①射线与其反向延长线成一条直线;
②直线a、b相交于点m;
③两直线相交于两个交点;
④直线A与直线B相交于点M
A.3个 B.2个 C.1个 D.4个
【答案】 C
【变式2】下列说法中,正确的个数有( )
①已知线段a,b且a-b=c,则c的值不是正的就是负的;
②已知平面内的任意三点A,B,C则AB+BC≥AC;
③延长AB到C,使BC=AB,则AC=2AB;
④直线上的顺次三点D、E、F,则DE+EF=DF.
A.1个 B.2个 C.3个 D.4个
【答案】C
类型四、有关条(个)数及长度的计算
4. 根据题意,完成下列填空.
如图所示,与是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3条直线,那么这3条直线最多有________个交点;如果在这个平面内再画第4条直线,那么这4条直线最多可有________个交点.由此我们可以猜想:在同一平面内,6条直线最多可有________个交点,n(n为大于1的整数)条直线最多可有________个交点(用含有n的代数式表示).
【答案】3, 6, 15, .
【解析】本题探索过程要分两步:首先要填好3条直线最多可有2+1=3个交点,再类推4条直线,5条直线,6条直线的情形所得到的和式,其次再研究这些和式的规律,得出一般性的结论.
【总结升华】n(n为大于1的整数)条直线的交点最多可有:个.
举一反三:
【变式1】平面上有个点,最多可以确定 条直线.
【答案】
【变式2】一条直线有个点,最多可以确定 条线段, 条射线.
【答案】,
【高清课堂:直线、射线、线段397363 拓展 1(4)】
【变式3】一个平面内有三条直线,会出现几个交点?
【答案】0个,1个,2个,或3个.
5.已知线段AB=14cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,求线段AM的长.
【思路点拨】题目中只说明了A、B、C三点在同一直线上,无法判定点C在线段AB上,还是在线段AB外(也就是在线段AB的延长线上).所以要分两种情况求线段AM的长.
【答案与解析】
解:①当点C在线段AB上时,如图所示.
因为M是线段AC的中点,
所以.
又因为AC=AB-BC,AB=14cm,BC=4cm,
所以.
②当点C在线段AB的延长线上时,如图所示.
因为M是线段AC的中点,
所以.
又因为AC=AB+BC,AB=14cm,BC=4cm,
所以9(cm).
所以线段AM的长为5cm或9cm.
【总结升华】在解答没有给出图形的问题时,一定要审题,要全面考虑所有可能的情况,即当我们面临的教学问题无法确定是哪种情形时,就要分类讨论.
举一反三:
【变式】( 秋•温州期末)已知点B在直线AC上,线段AB=8cm,AC=18cm,P、Q分别是线段AB、AC的中点,则线段PQ= .
【答案】13cm或5cm.
解:当点C在点A左侧时,AP=AC=9,AQ=AB=4,
∴PQ=AQ+AP=9+4=13cm.
当点C在点B右侧时,AP=AB=4cm,BC=AC﹣AB=10cm,AQ=,AC=9,PQ=AQ﹣AP=9﹣4=5cm.
故答案为:13cm或5cm.
.
类型五、路程最短问题
6.( 春•嵊州市期末)某公司员工分别在A、B、C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在( )
A.A区B.B区C.C区D.A、B两区之间
【答案】B.
【解析】
解:①设在A区、B区之间时,设距离A区x米,
则所有员工步行路程之和=30x+30(100﹣x)+10(100+200﹣x),
=30x+3000﹣30x+3000﹣10x,
=﹣10x+6000,
∴当x最大为100时,即在B区时,路程之和最小,为5000米;
②设在B区、C区之间时,设距离B区x米,
则所有员工步行路程之和=30(100+x)+30x+10(200﹣x),
=3000+30x+30x+2000﹣10x,
=50x+5000,
∴当x最大为0时,即在B区时,路程之和最小,为5000米;
综上所述,停靠点的位置应设在B区.
【总结升华】本题是线段的概念在现实中的应用,根据题意分别计算停靠点分别在各点时员工步行的路程和,选择最小的即可得解.
举一反三:
【变式】如图,从A到B最短的路线是( ).
A.A-G-E-B B.A-C-E-B
C.A-D-G-E-B D.A-F-E-B
【答案】D.
线段
射线
直线
图示
表示方法
线段AB或线段a
射线OA或射线a
直线AB或直线a
端点
两个
一个
无
长度
可度量
不可度量
不可度量
延伸性
不向两方延伸
向一方无限延伸
向两方无限延伸
相关学案
这是一份初中数学1 点和线学案,共7页。学案主要包含了学习目标,要点梳理,典型例题,答案与解析,总结升华,思路点拨等内容,欢迎下载使用。
这是一份37角(提高)知识讲解学案,共10页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
这是一份2020-2021学年4.3.1 角学案设计,共10页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。