华师大版七年级上册1 平行线当堂达标检测题
展开1.( •黔南州)如图,下列说法错误的是( )
A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥cD.若∠3+∠5=180°,则a∥c
2.一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .
A.第一次向左拐30°,第二次向右拐30°.
B.第一次向右拐50°,第二次向左拐130°.
C.第一次向左拐50°,第二次向左拐130°.
D.第一次向左拐50°,第二次向右拐130°.
3.已知:如图,AB∥DE,∠E=65°,则∠B+∠C的度数是( ) .
A.135° B.115° C.65° D.35°
4.两条平行直线被第三条直线所截时,产生的八个角中,角平分线互相平行的两个角是( ).
A.同位角 B.同旁内角 C.内错角 D. 同位角或内错角
5. 如图所示,b∥c,a⊥b,∠1=130°,则∠2=( ).
A.30° B. 40° C. 50° D. 60°
6. 如图,已知∠A=∠C,如果要判断AB∥CD,则需要补充的条件是( ).
A.∠ABD=∠CEF B.∠CED=∠ADB
A
B
C
D
E
C.∠CDB=∠CEF D.∠ABD+∠CED=180°
(第5题) (第6题) (第7题)
7.如图,,则AEB=( ).
A. B. C. D.
8. 如图所示,把一张对面互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论不正确的有( ).
A
B
C
D
E
F
G
A. B. ∠AEC=148° C. ∠BGE=64° D. ∠BFD=116°
二、填空题
9. (荆州二模)如图所示,AB∥CD,点E在CB的延长线上.若∠ECD=110°,则∠ABE的度数为________.
10. (宁波外校一模)如图所示,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A、B两岛的视角∠ACB等于________.
11. ( 春•监利县期末)已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为 .
12.如图,一块梯形玻璃的下半部分打碎了,若∠A=125°,∠D=107°,则打碎部分的两个角的度数分别为 .
13. 如图所示,已知AB∥CD,∠BAE=3∠ECF,∠ECF=28°,则∠E的度数 .
14. 如图,某个窗户上安装有两扇可以滑动的铝合金玻璃窗ABCD和A/B/C/D/,当玻璃窗户ABCD和A/B/C/D/重合时窗户是打开的;反之窗户是关闭的。若已知AB=10,BC=6,重叠部分四边形A/B/CD的面积是10,则该窗户关闭时两玻璃窗户展开的最大面积是 .
15.如图所示,直线AD、BE、CF相交于一点O,∠BOC的同位角有________,∠OED的同旁内角有________,∠ABO的内错角有________,由∠OED=∠BOC得________∥________,由∠OED=∠ABO得________∥________,由AB∥DE,CF∥DE可得AB________CF.
16. 如图,AB∥CD,则α、β、γ之间的关系为 .
γ
A
B
C
D
α
β
三、解答题
17.( •六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.
18. 如图所示,已知∠1=50°,∠2=130°,∠4=50°,∠6=130°,试说明a∥b,b∥c,d∥e,a∥c.
19. 如图所示,已知AB∥CD,∠1=110°,∠2=125°,求∠x的大小.
20.河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短。确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,垂足为C,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.
【答案与解析】
一、选择题
1.【答案】C.
2. 【答案】A;
【解析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.
3. 【答案】C;
【解析】∠CFA=∠E=65°,再由三角形的内角和为180°,可得答案.
4. 【答案】D;
【解析】三线八角中,角平分线互相平行的两角是同位角或内错角,互相垂直的两角是同旁内角.
5. 【答案】B;
【解析】反向延长射线a交c于点M,则∠2=90°-(180°-130°)=40°.
6. 【答案】B;
7.【答案】B;
【解析】∠EAB=75°-25°=50°.
∠AEB=180°-50°-65°=65°.
8.【答案】B
二、填空题
9. 【答案】70°;
【解析】因AB∥CD,所以∠ABC=∠ECD=110°,所以∠ABE=180°-110°=70°.
10.【答案】90°;
【解析】过点C作CD∥AE,由AE∥BF,知CD∥AE∥BF,则有∠ACD=∠EAC=
50°,∠BCD=∠CBF=40°,从而有∠ACB=∠ACD十∠BCD=50°+40°=90°.
11.【答案】2cm或8cm
【解析】解:当M在b下方时,距离为5﹣3=2cm;当M在a、b之间时,距离为5+3=8cm.
12.【答案】55°,73°;
【解析】如图,将原图补全,根据平行线的性质可得答案。
.
13.【答案】56°;
【解析】
解:过点F作FG∥EC,交AC于G,
∴ ∠ECF=∠CFG,
∵ AB∥CD,∴ ∠BAE=∠AFC.
又∵ ∠BAE=3∠ECF,∠ECF=28°,
∴ ∠BAE=3×28°=84°.
∴ ∠CFG=28°,∠AFC=84°.
∴ ∠AFG=∠AFC-∠CFG=56°.
又 FG∥EC,∴ ∠AFG=∠E.
∴ ∠E=56°.
14.【答案】110;
15.【答案】∠AFO、∠OED,∠EOD、∠EOC、∠OBC、∠EDO、∠EDC,
∠COB、∠DEB、∠DOB, OC、DE, DE、AB,∥;
【解析】本题主要考查同位角、内错角、同旁内角的识别和平行线的判定和性质.
16.【答案】α+β-γ=180°;
【解析】通过做平行线或构造三角形得解.
三、解答题
17.【解析】
解:∵直线l1∥l2,
∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,
∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,
∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.
即S1=S2=S3.
18.【解析】
解:因为∠1=50°,∠2=130°(已知),
所以∠1+∠2=180°.
所以a∥b(同旁内角互补,两直线平行).
所以∠3=∠1=50°(两直线平行,同位角相等).
又因为∠4=50°(已知),
所以∠3=∠4(等量代换).
所以d∥e(同位角相等,两直线平行).
因为∠5+∠6=180°(平角定义),∠6=130°(已知),
所以∠5=50°(等式的性质).
所以∠4=∠5(等量代换).
所以b∥c(内错角相等,两直线平行).
因为a∥b,b∥c(已知),
所以a∥c(平行于同一直线的两直线平行).
19.【解析】
解:过E点作EF∥AB,则∠3=180°-∠1=70°.
因为EF∥AB,AB∥CD,
所以EF∥CD.
所以∠4=180°-∠2=55°.
所以∠x=180°-∠3-∠4=55°.
20.【解析】
解:利用图形平移的性质及连接两点的线中,线段最短,可知:
.
而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.
八年级上册13.1.1 轴对称习题: 这是一份八年级上册13.1.1 轴对称习题,共9页。试卷主要包含了 已知A, 【答案】B;等内容,欢迎下载使用。
14《有理数》全章复习与巩固(提高)巩固练习: 这是一份14《有理数》全章复习与巩固(提高)巩固练习,共5页。试卷主要包含了选择题,填空题, 解答题等内容,欢迎下载使用。
16实数全章复习与巩固(提高)巩固练习: 这是一份16实数全章复习与巩固(提高)巩固练习,共6页。试卷主要包含了8的立方根是2等内容,欢迎下载使用。