重庆市沙坪坝区2023年数学八年级第一学期期末质量检测模拟试题【含解析】
展开
这是一份重庆市沙坪坝区2023年数学八年级第一学期期末质量检测模拟试题【含解析】,共17页。试卷主要包含了下列代数式中,属于分式的是,下列长度的线段能组成三角形的是等内容,欢迎下载使用。
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.太原市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足10000元,则这个小区的住户数( )
A.至少20户B.至多20户C.至少21户D.至多21户
2.如图所示,已知点A(﹣1,2)是一次函数y=kx+b(k≠0)的图象上的一点,则下列判断中正确的是( )
A.y随x的增大而减小B.k>0,b<0
C.当x<0时,y<0D.方程kx+b=2的解是x=﹣1
3.某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是( )
A.它精确到百位B.它精确到0.01
C.它精确到千分位D.它精确到千位
4.下列各点中,位于平面直角坐标系第四象限的点是( )
A.(1,2) B.(﹣1,2) C.(1,﹣2) D.(﹣1,﹣2)
5.下列代数式中,属于分式的是( )
A.﹣3B.C.﹣a﹣bD.﹣
6.若三角形两边长分别是4、5,则周长c的范围是( )
A.1<c<9B.9<c<14C.10<c<18D.无法确定
7.如图,在中,,平分,过点作于点.若,则( )
A.B.C.D.
8.在统计中,样本的标准差可以反映这组数据的( )
A.平均状态B.分布规律C.离散程度D.数值大小
9.已知点,都在一次函数的图像上,则的大小关系是( )
A.B.C.D.不能确定
10.下列长度的线段能组成三角形的是( )
A.3、4、8B.5、6、11C.5、6、10D.3、5、10
11.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是( )
A.12B.10C.8D.6
12.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )
A.4B.3C.2D.1
二、填空题(每题4分,共24分)
13.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.
14.若一组数据的平均数为6,众数为5,则这组数据的方差为__________.
15.已知点A、E、F、C在同一条直线l上,点B、D在直线l的异侧,若AB=CD,AE=CF,BF=DE,则AB与CD的位置关系是_______.
16.已知,其中为正整数,则__________.
17.已知关于的方程,当______时,此方程的解为;当______时,此方程无解.
18.方程的根是______.
三、解答题(共78分)
19.(8分)某农场去年计划生产玉米和小麦共200吨.采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%.该农场去年实际生产玉米、小麦各多少吨?
20.(8分)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.
(1)符合公司要求的购买方案有几种?请说明理由;
(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?
21.(8分)如图,在平面直角坐标系中,是坐标原点,点的坐标为,点的坐标,点是直线上位于第二象限内的一个动点,过点作轴于点,记点关于轴的对称点为点.
(1)求直线的解析式;
(2)若,求点的坐标.
22.(10分)已知,,求的值.
23.(10分)2019年11月26日,鲁南高铁日曲段正式开通,日照市民的出行更加便捷.从日照市到B市,高铁的行驶路线全程是600千米,普通列车的行驶路线全程是高铁的1.2倍.若高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间节省4小时,求高铁的平均速度.
24.(10分) (1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值;
(2)已知3x+2·5x+2=153x-4,求(2x-1)2-4x2+7的值.
25.(12分)如图所示的正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在网格线的交点上,点B关于y轴的对称点的坐标为(2,0),点C关于x轴的对称点的坐标为(﹣1,﹣2).
(1)根据上述条件,在网格中建立平面直角坐标系xOy;
(2)画出△ABC分别关于y轴的对称图形△A1B1C1;
(3)写出点A关于x轴的对称点的坐标.
26.如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动
(1)点M、N运动几秒后,M,N两点重合?
(2)点M、N运动几秒后,△AMN为等边三角形?
(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.
参考答案
一、选择题(每题4分,共48分)
1、C
【分析】根据“x户居民按1000元计算总费用>整体初装费+500x”列不等式求解即可.
【详解】解:设这个小区的住户数为户.
则,
解得
是整数,
这个小区的住户数至少1户.
故选:C,
【点睛】
本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等关系式即可求解.注意本题中的住户数是整数,所以在x>20的情况下,至少取1.
2、D
【分析】根据一次函数的性质判断即可.
【详解】由图象可得:
A、y随x的增大而增大;
B、k>0,b>0;
C、当x<0时,y>0或y<0;
D、方程kx+b=2的解是x=﹣1,
故选:D.
【点睛】
考查了一次函数与一元一次方程的关系,一次函数图象与系数的关系,正确的识别图象是解题的关键.
3、D
【分析】根据近似数的精确度求解.
【详解】解:1.36×105精确到千位.
故选:D.
【点睛】
本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.
4、C
【解析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.
【详解】A、(1,2)在第一象限,故本选项错误;
B、(﹣1,2)在第二象限,故本选项错误;
C、(1,﹣2)在第四象限,故本选项正确;
D、(﹣1,﹣2)在第三象限,故本选项错误.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
5、B
【分析】根据分式的定义:形如,A、B是整式,B中含有字母且B不等于0的式子叫做分式,逐一判断即可.
【详解】解:A.﹣3不是分式,故本选项不符合题意;
B.是分式,故本选项符合题意;
C.﹣a﹣b不是分式,故本选项不符合题意;
D.﹣不是分式,故本选项不符合题意.
故选B.
【点睛】
此题考查的是分式的判断,掌握分式的定义是解决此题的关键.
6、C
【解析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边,
∴5-4
相关试卷
这是一份重庆市六校2023-2024学年八年级数学第一学期期末教学质量检测模拟试题【含解析】,共18页。试卷主要包含了式子中x的取值范围是等内容,欢迎下载使用。
这是一份重庆市两江巴蜀中学2023年八年级数学第一学期期末质量检测模拟试题【含解析】,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列分式中,不是最简分式的是,直线过点,,则的值是,如果m是的整数部分,则m的值为等内容,欢迎下载使用。
这是一份重庆市江津第二中学2023年八年级数学第一学期期末质量检测模拟试题【含解析】,共18页。试卷主要包含了如图,,,,则的度数是,化简的结果为,下列等式成立的是,9的算术平方根是,若,则内应填的式子是等内容,欢迎下载使用。