重庆市沙坪坝区南开中学2023年数学八上期末教学质量检测试题【含解析】
展开
这是一份重庆市沙坪坝区南开中学2023年数学八上期末教学质量检测试题【含解析】,共23页。试卷主要包含了分式方程 的解是,下列图形是轴对称图形的是等内容,欢迎下载使用。
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.若是完全平方式,则m的值等于( )
A.1或5B.5C.7D.7或
2.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′ 恰好落在CD上,若∠BAD=110°,则∠ACB的度数为( )
A.40°B.35°C.60°D.70°
3.在下列说法中:
①有一个外角是 120°的等腰三角形是等边三角形.
② 有两个外角相等的等腰三角形是等边三角形.
③ 有一边上的高也是这边上的中线的等腰三角形是等边三角形.
④ 三个外角都相等的三角形是等边三角形.
其中正确的有( )
A.1 个B.2 个C.3 个D.4 个
4.已知等腰三角形的周长是22,其中一边长为8,则其它两边的长度分别是( )
A.3和11B.7和7C.6和8或7和7D.3和11或7和7
5.如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E,那么∠AED等于( )
A.80°B.60°
C.40°D.30°
6.某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )
A.得分在70~80分的人数最多B.该班的总人数为40
C.人数最少的得分段的频数为2D.得分及格(≥60分)的有12人
7.分式方程 的解是( )
A.x=1B.x=2C.x=0D.无解.
8.如图,是数轴上的四个点,这四个点中最适合表示的是 ( )
A.点B.点C.点D.点
9.每天用微信计步是不少市民的习惯,小张老师记录了一周每天的步数并制作成折线统计图,则小张老师这一周一天的步数超过7000步的有( )
A.1天B.2天C.3天D.4天
10.下列图形是轴对称图形的是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图, 在△ABC中, ∠ACB的平分线交AB于点D, DE⊥AC于点E, F为BC上一点,若DF=AD, △ACD与△CDF的面积分别为10和4, 则△AED的面积为______
12.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为______.
13.如图,等边的边垂直于轴,点在轴上已知点,则点的坐标为____.
14.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7 cm,则正方形A,B,C,D的面积之和为___________cm1.
15.华为手机上使用的芯片, ,则用科学记数法表示为__________
16.在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是_______.
17.已知am=3,an=2,则a2m﹣n的值为_____.
18.如图,中,,,垂足为,,,点从点出发沿线段的方向移动到点停止,连接.若与的面积相等,则线段的长度是______.
三、解答题(共66分)
19.(10分)如图,平分,平分外角,.
(1)求证:;
(2)若,求的度数.
20.(6分)阅读下面内容,并解答问题.
(1)请补充要求证的结论,并写出证明过程;
(2)请从下列A、B两题中任选一题作答,我选择_______题.
A.在图1的基础上,分别作的平分线与的平分线交于点,得到图2,则的度数为_______.
B.如图3,,直线分别交,于点,.点在直线,之间,且在直线右侧,的平分线与的平分线交于点,则与满足的数量关系为_______.
21.(6分)已知x1+y1+6x﹣4y+13=0,求(xy)﹣1.
22.(8分)如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连接EG,EF.
(1)求证:BG=CF.
(2)请你猜想BE+CF与EF的大小关系,并说明理由.
23.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.
(1)依题意补全图形;
(2)若∠PAC=20°,求∠AEB的度数;
24.(8分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB=6,OC=1.点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线与y轴平行,直线交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线恰好过点C.
(1)求点A和点B的坐标;
(2)当0<t<3时,求m关于t的函数关系式;
(3)当m=3.1时,请直接写出点P的坐标.
25.(10分)如图(1),方格图中每个小正方形的边长为1,点A、B、C都是格点.
(1)画出关于直线MN对称的;
(2)写出的长度;
(3)如图(2),A,C是直线MN同侧固定的点,是直线MN上的一个动点,在直线MN上画出点,使最小.
26.(10分)对于任意一个三位数,将它任意两个数位上的数字对调后得到一个首位不为0的新的三位数(可以与相同),记,在所有可能的情况中,当最小时,我们称此时的是的“平安快乐数”,并规定.例如:318按上述方法可得新数381、813、138,因为,,,而,所以138是318的“平安快乐数”,此时.
(1)168的“平安快乐数”为_______________,______________;
(2)若(,都是正整数),交换其十位与百位上的数字得到新数,当是13的倍数时,求的最大值.
参考答案
一、选择题(每小题3分,共30分)
1、D
【分析】根据完全平方公式,首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.
【详解】解:∵多项式是完全平方式,
∴,
∴
解得:m=7或-1
故选:D.
【点睛】
此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.
2、B
【分析】连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE= ∠BAD,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°-∠BAD.
【详解】
解:如图,连接AB',BB',过A作AE⊥CD于E,
∵点B关于AC的对称点B'恰好落在CD上,
∴AC垂直平分BB',
∴AB=AB',
∴∠BAC=∠B'AC,
∵AB=AD,
∴AD=AB',
又∵AE⊥CD,
∴∠DAE=∠B'AE,
∴∠CAE=∠BAD=55°,
又∵∠AEC=90°,
∴∠ACB=∠ACB'=35°,
故选B.
【点睛】
本题主要考查了轴对称的性质,四边形内角和以及三角形外角性质的运用,解决问题的关键是作辅助线构造四边形AOB'E,解题时注意:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
3、B
【分析】根据有一个角等于60°的等腰三角形是等边三角形,三个角相等的三角形是等边三角形进行分析即可.
【详解】解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;
②有两个外角相等的等腰三角形是等边三角形,说法错误;
③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;
④三个外角都相等的三角形是等边三角形,说法正确,
正确的命题有2个,
故选:B.
【点睛】
此题主要考查了命题与定理,关键是掌握等边三角形的判定方法.
4、C
【分析】要确定等腰三角形的另外两条边长,可以根据已知的边长,结合周长公式求解,由于长为8的边没有明确是腰还是底边,要进行分类讨论.
【详解】解:等腰三角形的周长是22.
当8为腰时,它的底边长,,能构成等腰三角形.
当8为底时,它的腰长,,能构成等腰三角形.
即它两边的长度分别是6和8或7和7.
故选:C.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系,注意检验三角形三边长是否构成三角形.
5、C
【解析】根据折叠的性质可得BD=DE,AB=AE,然后根据AC=AE+EC,AB+BD=AC,证得DE=EC,根据等边对等角以及三角形的外角的性质求解.
【详解】根据折叠的性质可得:BD=DE,AB=AE.
∵AC=AE+EC,AB+BD=AC,∴DE=EC,∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.
故选C.
【点睛】
本题考查了折叠的性质以及等腰三角形的性质、三角形的外角的性质,证明DE=EC是解答本题的关键.
6、D
【解析】试题分析:A、得分在70~80分之间的人数最多,有14人,此选项正确;
B、该班的总人数为4+12+14+8+2=40人,此选项正确;
C、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;
D、及格(≥60分)人数是12+14+8+2=36人,此选项错误.
故选D.
点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
7、C
【解析】分析:首先进行去分母将分式方程转化为整式方程,然后解一元一次方程,最后对方程的根进行检验.
详解:去分母可得:x-2=2(x-1), 解得:x=0,
经检验:x=0是原方程的解, ∴分式方程的解为x=0, 故选C.
点睛:本题主要考查的是解分式方程的方法,属于基础题型.去分母是解分式方程的关键所在,还要注意分式方程最后必须进行验根.
8、A
【分析】根据 进行判断即可.
【详解】∵
∴
∴点最适合表示
故答案为:A.
【点睛】
本题考查了用数轴上的点表示无理数的问题,掌握要表示的数的大小范围是解题的关键.
9、B
【分析】根据折线统计图进行统计即可.
【详解】根据统计图可得:小张老师这一周一天的步数超过7000步的有:星期一,星期六,共2天.
故选:B
【点睛】
本题考查的是折线统计图,能从统计图中正确的读出信息是关键.
10、B
【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;
B、有六条对称轴,是轴对称图形,故本选项正确;
C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;
D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.
故选B.
二、填空题(每小题3分,共24分)
11、1
【分析】如图(见解析),过点D作,根据角平分线的性质可得,再利用三角形全等的判定定理得出,从而有,最后根据三角形面积的和差即可得出答案.
【详解】如图,过点D作
平分,
又
则
解得
故答案为:1.
【点睛】
本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键.
12、1
【分析】根据线段垂直平分线的性质求出AD=BD,求出∠BAD=∠B=30°,求出∠CAD=30°,根据含30°角的直角三角形的性质求出AD即可.
【详解】∵DE是线段AB的垂直平分线,
∴AD=BD,
∵∠B=30°,
∴∠BAD=∠B=30°,
又∵∠C=90°
∴∠CAB=90°-∠B=90°-30°=10°,
∴∠DAC=∠CAB-∠BAD=10°-30°=30°,
∴在Rt△ACD中,AD=2CD=1,
∴BD=AD=1.
故答案为:1.
【点睛】
本题考查的是线段垂直平分线的性质,含30°角的直角三角形的性质,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.
13、
【分析】根据等边三角形的性质以及30°的直角三角形的性质求出AC的长度,再利用勾股定理求出CE的长度即可得出答案.
【详解】如图:
设AB与x轴交于E点
∵AB⊥CE
∴∠CEA=90°
∵
∴AE=2,OE=2
∵△ABC是等边三角形,CE⊥AB
∴
在Rt△ACE中,AC=2AE=4
∴
∴
∴点C的坐标为
故答案为:
【点睛】
本题考查了等边三角形,30°的直角三角形的性质,勾股定理,掌握等边三角形,30°的直角三角形的性质,勾股定理是解题的关键.
14、2
【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.
【详解】解:如图,
∵所有的三角形都是直角三角形,所有的四边形都是正方形,
∴正方形A的面积=a1,正方形B的面积=b1,
正方形C的面积=c1,正方形D的面积=d1,
又∵a1+b1=x1,c1+d1=y1,
∴正方形A、B、C、D的面积和=(a1+b1)+(c1+d1)=x1+y1=71=2cm1.
故答案为:2.
【点睛】
本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方是解答本题的关键.
15、
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】解:.
故答案为:.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定.
16、(﹣1,0)
【详解】解:由三角形两边之差小于第三边可知,
当A、B、P三点不共线时,由三角形三边关系|PA﹣PB|<AB;
当A、B、P三点共线时,∵A(0,1),B(1,2)两点都在x轴同侧,∴|PA﹣PB|=AB.
∴|PA﹣PB|≤AB.
∴本题中当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.
设直线AB的解析式为y=kx+b,
∵A(0,1),B(1,2),∴,解得.
∴直线AB的解析式为y=x+1.
令y=0,得0=x+1,解得x=﹣1.
∴点P的坐标是(﹣1,0).
故答案为:(﹣1,0).
17、4.1
【解析】分析:首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m-n的值为多少即可.
详解:∵am=3,
∴a2m=32=9,
∴a2m-n==4.1.
故答案为4.1.
点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.
18、2
【分析】当△ADE与△CDE的面积相等时,DE∥AC,此时△BDE∽△BCA,利用相似三角形的对应边成比例进行解答即可.
【详解】解:如下图示,依题意得,当DE∥AC时,△ADE与△CDE的面积相等,
此时△BDE∽△BCA,
所以 BE:AB=BD:BC,
因为AB=CB, 所以BE=BD
所以.
【点睛】
本题考查了相似三角形的判定与性质,平行线间的距离以及三角形的面积.根据题意得到当DE∥AC时,△ADE与△CDE的面积相等是解题的难点.
三、解答题(共66分)
19、(1)详见解析;(2).
【分析】(1)由已知条件可得,根据同位角相等,两直线平行即可得;
(2)根据角平分线的定义,可得出,,再根据外角的性质可得与,通过角度的计算可得出答案.
【详解】(1)证明:∵平分外角,
∴,
又∵,
∴,
∴.
(2)解:∵BE、CE分别是△ABC内角∠ABC和外角∠ACD的平分线,
∴,,
又∵∠ACD是△ABC的外角,
∴,
∴
∵∠ECD是△BCE的外角,
∴
∴,
∵∠A=50°,
∴.
【点睛】
本题考查了角平分线的定义和三角形外角的性质,熟练运用三角形外角的性质进行角度的计算是解题的关键.
20、(1);证明见解析;(2)A.,B..
【分析】(1)由AB∥CD,可知∠BEF与∠DFE互补,由角平分线的性质可得,由三角形内角和定理可得∠G=,则;
(2)A,由(1)可知,根据角平分线的性质可得,故,根据三角形的内角和即可求出=;
B,设,,故=,再得到,根据角平分线的性质可得,则,再求出,即可比较得到结论.
【详解】(1);
证明:,
,
平分,平分,
,,
.
在中,,
,
.
(2)A,由(1)可知,
∵的平分线与的平分线交于点
∴,
则,
∴==
故答案为:A;45;
B,设,,
∴=,
则,
∵的平分线与的平分线交于点
∴,
∴,
∴==,
∵=,
故
故答案为:B;.
【点睛】
本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握这些定理是解题的关键.
21、
【分析】已知等式变形后,利用非负数的性质求出x与y的值,即可确定出所求式子的值.
【详解】解:∵x1+y1+6x﹣4y+13=0,
∴(x+3)1+(y﹣1)1=0,
∴x+3=0,y﹣1=0,
∴x=﹣3,y=1,
∴(xy)﹣1=(﹣3×1)﹣1=.
考点:配方法的应用;非负数的性质:偶次方.
22、(1)见解析;(2)BE+CF>EF,理由见解析
【分析】(1)求出∠C=∠GBD,BD=DC,根据ASA证出△CFD≌△BGD即可.
(2)根据全等得出BG=CF,根据三角形三边关系定理求出即可.
【详解】解:(1)证明:∵BG∥AC,
∴∠C=∠GBD,
∵D是BC的中点,
∴BD=DC,
在△CFD和△BGD中
,
∴△CFD≌△BGD,
∴BG=CF.
(2)BE+CF>EF,
理由如下:
∵△CFD≌△BGD,
∴CF=BG,
在△BGE中,BG+BE>EG,
∵△CFD≌△BGD,
∴GD=DF,ED⊥GF,
∴EF=EG,
∴BE+CF>EF.
【点睛】
本题考查了全等三角形的性质和判定,平行线的性质,线段垂直平分线性质,三角形三边关系定理的应用,主要考查学生的推理能力.
23、(1)见详解;(2)60°
【分析】(1)作出点C关于直线AP的对称点为点D,连接AD,BD,即可得到所作图形;
(2)由等边三角形的性质和轴对称的性质,可得AB=AD,∠BAD=100°,结合三角形内角和定理,求出∠ADB的度数,然后由三角形外角的性质,即可求解.
【详解】(1)补全图形,如图所示:
(2)∵点C关于直线AP的对称点为点D,
∴AC=AD,∠PAD=∠PAC=20°,
∵三角形ABC是等边三角形,
∴AB=AC,∠BAC=60°,
∴AB=AD,∠BAD=60°+20°+20°=100°,
∴∠ADB=(180°-100°)÷2=40°,
∴∠AEB=∠ADB+∠PAD=40°+20°=60°.
【点睛】
本题主要考查等边三角形的性质,等腰三角形的性质,轴对称的性质,三角形内角和定理以及三角形外角的性质,熟练掌握上述性质定理,是解题的关键.
24、(1)(3,3),(6,0) (2)(0
相关试卷
这是一份重庆南开融侨中学2023年数学八上期末教学质量检测模拟试题【含解析】,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份北师版·重庆市沙坪坝区南开中学2021八年级下册期末数学试题,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年重庆市沙坪坝区南开中学七年级(上)期末数学试卷(含详细答案解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。