重庆市万州新田中学2023-2024学年数学八年级第一学期期末监测模拟试题【含解析】
展开注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.在中,,与的外角度数如图所示,则x的值是
A.60B.65C.70D.80
2.如图,中,,分别是,的平分线,,则等于( )
A.B.C.D.
3.如图,在四边形中,添加下列一个条件后,仍然不能证明,那么这个条件是( )
A.B.平分C.D.
4.甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:
①两城相距千米;
②乙车比甲车晚出发小时,却早到小时;
③乙车出发后小时追上甲车;
④当甲、乙两车相距千米时,
其中正确的结论有( )
A.个B.个C.个D.个
5.如果一元一次不等式组的解集为>3,则的取值范围是( )
A.>3B.≥3C.≤3D.<3
6.下列图案中不是轴对称图形的是( )
A.B.C.D.
7.已知是整数,当取最小值时,的值是( )
A.5B.6C.7D.8
8.下列图形中,是轴对称图形且只有三条对称轴的是( )
A.B.C.D.
9.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )
A.15°B.30°C.45°D.60°
10.若使某个分式无意义,则这个分式可以是( )
A.B.C.D.
11.某文具超市有四种水笔销售,它们的单价分别是5元,4元,3元,1.2元.某天的水笔销售情况如图所示,那么这天该文具超市销售的水笔的单价的平均值是( )
A.4元B.4.5元C.3.2元D.3元
12.在根式① ② ③ ④中最简二次根式是( )
A.①②B.③④C.①③D.①④
二、填空题(每题4分,共24分)
13.用如图所示的正方形和长方形卡片若干张,拼成一个长为3a+2b,宽为2a+b的大长方形,需要B类卡片_____张.
14.已知关于x,y的方程组的解满足不等式2x+y>8,则m的取值范围是____.
15.若已知,,则__________.
16.若,,则______.
17.计算:___________
18.如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是_____.
三、解答题(共78分)
19.(8分)观察下列各式
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
…
①根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=______.
②你能否由此归纳出一般性规律:(x-1)(xn+xn-1+…+x+1)=______.
③根据②求出:1+2+22+…+234+235的结果.
20.(8分)如图,点O是△ABC边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(Ⅰ)求证:OE=OF;
(Ⅱ)若CE=8,CF=6,求OC的长;
21.(8分)如图,在△BCD中,BC=4,BD=1.
(1)求CD的取值范围;
(2)若AE∥BD,∠A=11°,∠BDE=121°,求∠C的度数.
22.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
23.(10分)老师在黑板上书写了一个代数式的正确计算结果,随后用手遮住了原代数式的一部分,如图:
(1)求被手遮住部分的代数式,并将其化简;
(2)原代数式的值能等于-1吗?请说明理由.
24.(10分)已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.
(1)求证:∠B=∠DEC;
(2)求证:四边形ADCE是菱形.
25.(12分)在等边中,点,分别在边,上.
(1)如图,若,以为边作等边,交于点,连接.
求证:①;
②平分.
(2)如图,若,作,交的延长线于点,求证:.
26.(1)计算:
(2)计算:
参考答案
一、选择题(每题4分,共48分)
1、C
【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】∵与∠ABC相邻的外角=∠A+∠C,
∴x+65=x-5+x,
解得x=1.
故选C.
【点睛】
本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
2、B
【分析】根据三角形的内角和定理求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数.
【详解】解:∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=180°-50°=130°,
∵BO,CO分别是∠ABC,∠ACB的平分线,
,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°.
故选:B.
【点睛】
本题考查角平分线的有关计算,三角形内角和定理.本题中是将∠OBC+∠OCB看成一个整体求得的,掌握整体思想是解决此题的关键.
3、D
【分析】根据全等三角形的判定定理:SSS、SAS、AAS、ASA、Hl逐一判定即可.
【详解】A选项,,,AC=AC,根据SSS可判定;
B选项,平分,即∠DAC=∠BAC,根据SAS可判定;
C选项,,根据Hl可判定;
D选项,,不能判定;
故选:D.
【点睛】
此题主要考查全等三角形的判定,熟练掌握,即可解题.
4、B
【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.
【详解】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且乙用时3小时,即比甲早到1小时,故①②都正确;
设甲车离开A城的距离y与t的关系式为y甲=kt,
把(5,300)代入可求得k=60,
∴y甲=60t,
设乙车离开A城的距离y与t的关系式为y乙=mt+n,
把(1,0)和(4,300)代入可得,解得,
∴y乙=100t-100,
令y甲=y乙可得:60t=100t-100,解得t=2.5,
即甲、乙两直线的交点横坐标为t=2.5,
此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;
令|y甲-y乙|=50,可得|60t-100t+100|=50,即|100-40t|=50,
当100-40t=50时,可解得t=,
当100-40t=-50时,可解得t=,
令y甲=50,解得t=,令y甲=250,解得t=,
∴当t=时,y甲=50,此时乙还没出发,此时相距50千米,
当t=时,乙在B城,此时相距50千米,
综上可知当t的值为或或或时,两车相距50千米,故④错误;
综上可知正确的有①②共两个,
故选:B.
【点睛】
本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.
5、C
【分析】由题意不等式组中的不等式分别解出来为x>1,x>a,已知不等式解集为x>1,再根据不等式组解集的口诀:同大取大,得到a的范围.
【详解】由题意x>1,x>a,
∵一元一次不等式组的解集为x>1,
∴a≤1.
故选:C.
【点睛】
主要考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a的范围.
6、D
【分析】根据轴对称图形的概念对各选项分析判断即可得解.
【详解】A.是轴对称图形,故本选项不合题意;
B.是轴对称图形,故本选项不合题意;
C.是轴对称图形,故本选项不合题意;
D.不是轴对称图形,故本选项正确.
故选:D.
【点睛】
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
7、A
【分析】根据绝对值的意义,找到与最接近的整数,可得结论.
【详解】解:∵,∴,
且与最接近的整数是5,∴当取最小值时,的值是5,
故选A.
【点睛】
本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.
8、C
【解析】首先确定轴对称图形,再根据对称轴的概念,确定对称轴的条数.
【详解】解:A、不是轴对称图形;
B、是轴对称图形,有2条对称轴;
C、是轴对称图形,有3条对称轴;
D、是轴对称图形,有4条对称轴;
故选:C.
【点睛】
掌握轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.能够熟练说出轴对称图形的对称轴条数.
9、A
【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.
【详解】∵等边三角形ABC中,AD⊥BC,
∴BD=CD,即:AD是BC的垂直平分线,
∵点E在AD上,
∴BE=CE,
∴∠EBC=∠ECB,
∵∠EBC=45°,
∴∠ECB=45°,
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠ACE=∠ACB-∠ECB=15°,
故选A.
【点睛】
此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.
10、B
【分析】根据分式无意义的条件,对每个式子进行判断,即可得到答案.
【详解】解:A、由,得,故A不符合题意;
B、由,得,故B符合题意;
C、由,得,故C不符合题意;
D、由,得,故D不符合题意;
故选:B.
【点睛】
本题考查了分式无意义的条件,解题的关键是掌握分式无意义的条件,即分母等于0.
11、D
【分析】首先设这天该文具超市销售的水笔共有支,然后根据题意列出关系式求解即可.
【详解】设这天该文具超市销售的水笔共有支,则其单价的平均值是
故选:D.
【点睛】
此题主要考查平均数的实际应用,熟练掌握,即可解题.
12、C
【分析】根据最简二次根式的定义逐个判断即可.
【详解】①是最简二次根式;
②,被开方数含分母,不是最简二次根式;
③是最简二次根式;
④,被开方数含能开得尽方的因数,不是最简二次根式;
故选:C.
【点睛】
本题考查了最简二次根式,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.
二、填空题(每题4分,共24分)
13、1.
【分析】先求出长为3a+2b,宽为2a+b的矩形面积,然后对照A、B、C三种卡片的面积,进行组合.
【详解】解:长为3a+2b,宽为2a+b的矩形面积为(3a+2b)(2a+b)=6a2+1ab+2b2,
A图形面积为a2,
B图形面积为ab,
C图形面积为b2,
则可知需要A类卡片6张,B类卡片1张,C类卡片2张.
故答案为:1.
【点睛】
本题主要考查多项式乘法的应用,正确的计算多项式乘法是解题的关键.
14、m<﹣1.
【分析】先解方程组,然后将x、y的值代入不等式解答.
【详解】解:解方程组得x=2m﹣1,y=4﹣5m,
将x=2m﹣1,y=4﹣5m代入不等式2x+y>8得
4m﹣2+4﹣5m>8,
∴m<﹣1.
故答案为:m<﹣1.
【点睛】
本题考查了方程组与不等式,熟练解方程组与不等式是解题的关键.
15、1
【分析】利用平方差公式,代入x+y=5即可算出.
【详解】解:由=5
把x+y=5代入得
x-y=1
故本题答案为1.
【点睛】
本题考查了平方差公式的运用,熟练掌握相关知识点事解决本题的关键.
16、15
【分析】根据同底数幂乘法法则来求即可.
【详解】解: 3×5=15
【点睛】
本题考查的是同底数幂的乘法法则,同底数幂相乘,底数不变指数相加.
17、
【分析】根据分式的乘法则计算即可.
【详解】,
故答案为:.
【点睛】
本考查了分式的乘法,熟练掌握分式的乘法则是解题的关键.
18、
【分析】先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】解:把代入,得出,
函数和的图象交于点,
即,同时满足两个一次函数的解析式,
所以关于,的方程组的解是.
故答案为.
【点睛】
本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
三、解答题(共78分)
19、 (1)x7-1;(2)xn+1-1;(3)236-1.
【解析】①观察已知各式,得到一般性规律,化简原式即可;
②原式利用①中得出的规律化简即可得到结果;
③原式变形后,利用②中得出的规律化简即可得到结果.
【详解】解:①根据题意得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;
②根据题意得:(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1;
③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.
故答案为①x7﹣1;②xn+1﹣1;③236﹣1
【点睛】
本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
20、(1)证明见解析;(2)5.
【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案; (2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长.
试题解析:
(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠5,4=∠6,
∵MN∥BC,
∴∠1=∠5,3=∠6,
∴∠1=∠2,∠3=∠4,
∴EO=CO,FO=CO,
∴OE=OF;
(2)∵∠2=∠5,∠4=∠6,
∴∠2+∠4=∠5+∠6=90°,
∵CE=8,CF=6,
∴EF=
∴OC=EF=5;
21、(1)1
(2)根据平行线的性质求得∠AEC的度数,继而根据三角形内角和定理即可求得答案.
【详解】(1)在△BCD中,BD-BC
∴1-4
∴∠AEC=180°-∠BDE=11°,
又∵∠A+∠C+∠AEC=180°,∠A=11°,
∴∠C=70°.
【点睛】
本题考查了三角形三边关系,三角形内角和定理,熟练掌握相关知识是解题的关键.
22、(1)见解析(2)BD=2
【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=ED,∠DEA=∠C=90°.
∵在Rt△ACD和Rt△AED中,,
∴Rt△ACD≌Rt△AED(HL).
(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.
∵DE⊥AB,∴∠DEB=90°.
∵∠B=30°,∴BD=2DE=2.
(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.
(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.
23、(1);(2)原代数式的值不能等于-1,理由见详解
【分析】(1) 设被手遮住部分的代数式为A,根据题意得出A的表达式,再根据分式混合运算的法则进行计算即可;
(2)令原代数式的值为−1,求出x的值,代入代数式中的式子进行验证即可.
【详解】解:(1)设被手遮住部分的代数式为A,
则A=
=
=;
(2) 原代数式的值不能等于-1.
若原代数式的值为−1,则=-1,即x+1=−x+1,解得x=0,
当x=0时,除式=0,
故原代数式的值不能等于−1.
【点睛】
本题考查的是分式的化简求值,在解答此类提问题时要注意x的取值要保证每一个分式有意义.
24、(1)证明见解析;(2)证明见解析.
【解析】(1)根据直角三角形斜边上的中线等于斜边的一半,得到DB=DC,从而∠B=∠DCB,由DE∥BC,得到∠DCB=∠CDE,由CE=CD,得到∠CDE=∠DEC,利用等量代换,得到∠B=∠DEC;
(2)先利用一组对边平行且相等的四边形是平行四边形,证明四边形ADCE是平行四边形,再由CD=CE,证明平行四边形ADCE是菱形.
【详解】(1)证明:在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,
∴CD=DB,
∴∠B=∠DCB,
∵DE∥BC,
∴∠DCB=∠CDE,
∵CD=CE,
∴∠CDE=∠CED,
∴∠B=∠CED.
(2)证明:∵DE∥BC,
∴∠ADE=∠B,
∵∠B=∠DEC,
∴∠ADE=∠DEC,
∴AD∥EC,
∵EC=CD=AD,
∴四边形ADCE是平行四边形,
∵CD=CE,
∴四边形ADCE是菱形.
故答案为:(1)证明见解析;(2)证明见解析.
【点睛】
本题考查了直角三角形的性质,菱形的判定.
25、(1)①见解析;②见解析;(2)见解析
【分析】(1)①利用SAS即可证出△ABF≌△CAE,再根据全等三角形的性质即可证出结论;
②过点D作DM⊥AF于M,作DN⊥EC交EC延长线于N,利用AAS证出△ADM≌△CDN,即可得出DM=DN,然后根据角平分线的判定定理即可证出结论;
(2)在CB上截取一点G,使CF=FG,连接AG,利用SAS证出△EAC≌△GCA,可得CE=AG,∠AEC=∠CGA,然后利用ASA证出△AGF≌△PCF,可得AG=CP,从而证出结论.
【详解】解:(1)①△ABC为等边三角形
∴AB=CA,∠B=∠CAE=∠BAC=60°
在△ABF和△CAE中
∴△ABF≌△CAE
∴
②过点D作DM⊥AF于M,作DN⊥EC交EC延长线于N
∵△ABF≌△CAE
∴∠BAF=∠ACE
∴∠AOC=180°-∠ACE-∠OAC=180°-∠BAF-∠OAC=180°-∠BAC=120°
∴∠MDN=360°-∠AOC-∠DMO-∠DNO=60°
∵△ACD为等边三角形
∴DA=DC,∠ADC=60°
∴∠ADC=∠MDN
∴∠ADC-∠MDC=∠MDN-∠MDC
∴∠ADM=∠CDN
在△ADM和△CDN中
∴△ADM≌△CDN
∴DM=DN
∴平分
(2)在CB上截取一点G,使CF=FG,连接AG
∵AE=2CF,CG=CF+FG=2CF
∴AE=CG
∵△ABC为等边三角形
∴∠EAC=∠GCA=60°
在△EAC和△GCA中
∴△EAC≌△GCA
∴CE=AG,∠AEC=∠CGA
∵∠AEC=∠BCP
∴∠CGA=∠BCP,即∠AGF=∠PCF
在△AGF和△PCF中
∴△AGF≌△PCF
∴AG=CP
∴CE=CP
【点睛】
此题考查的是等边三角形的性质、全等三角形的判定及性质和角平分线的判定,掌握等边三角形的性质、构造全等三角形的方法、全等三角形的判定及性质和角平分线的判定定理是解决此题的关键.
26、(1);(2)1
【分析】(1)依次将各式化成最简二次根式,合并即可;
(2)按照二次根式性质进行化简,再计算即可.
【详解】解:(1)原式=+2﹣
=;
(2)原式=2×﹣3+×3
=1﹣3+2
=1.
【点睛】
本题考查了二次根式的混合加减运算以及实数的混合计算,解答关键是根据法则进行计算.
重庆市万州新田中学2023年八年级数学第一学期期末检测试题【含解析】: 这是一份重庆市万州新田中学2023年八年级数学第一学期期末检测试题【含解析】,共16页。试卷主要包含了下列代数式中,属于分式的是,已知二元一次方程组,则a的值是,已知,则的值是等内容,欢迎下载使用。
重庆市万州新田中学2023-2024学年数学八年级第一学期期末考试模拟试题【含解析】: 这是一份重庆市万州新田中学2023-2024学年数学八年级第一学期期末考试模拟试题【含解析】,共20页。试卷主要包含了答题时请按要求用笔,若,那么,下列因式分解错误的是等内容,欢迎下载使用。
重庆市万州三中学2023-2024学年八年级数学第一学期期末质量跟踪监视模拟试题【含解析】: 这是一份重庆市万州三中学2023-2024学年八年级数学第一学期期末质量跟踪监视模拟试题【含解析】,共21页。试卷主要包含了考生要认真填写考场号和座位序号,已知,如图点A等内容,欢迎下载使用。