- 2023年高考全国乙卷数学(理)真题(解析版) 试卷 0 次下载
- 2023新高考Ⅱ卷数学真题(原卷+解析版) 试卷 0 次下载
- 2024年 全国甲卷 数学(理)高考真题(含解析) 试卷 0 次下载
- 2024年 全国甲卷 数学(文)高考真题(含解析) 试卷 0 次下载
- 2024年天津高考数学真题(含解析) 试卷 0 次下载
2024年北京高考数学真题(含解析)
展开第一部分(选择题 共40分)
一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1. 已知集合,,则( )
A. B.
C. D.
2. 已知,则( ).
A. B. C. D.
3. 圆的圆心到直线的距离为( )
A. B. C. D.
4. 在的展开式中,的系数为( )
A. B. C. D.
5. 设 ,是向量,则“”是“或”的( ).
A. 充分不必要条件B. 必要不充分条件
C. 充要条件D. 既不充分也不必要条件
6. 设函数.已知,,且的最小值为,则( )
A. 1B. 2C. 3D. 4
7. 生物丰富度指数 是河流水质的一个评价指标,其中分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种类数没有变化,生物个体总数由变为,生物丰富度指数由提高到,则( )
A. B.
C. D.
8. 如图,在四棱锥中,底面是边长为4的正方形,,,该棱锥的高为( ).
A. 1B. 2C. D.
9. 已知,是函数的图象上两个不同的点,则( )
A. B.
C. D.
10. 已知是平面直角坐标系中的点集.设是中两点间距离的最大值,是表示的图形的面积,则( )
A. ,B. ,
C. ,D. ,
第二部分(非选择题 共110分)
二、填空题共5小题,每小题5分,共25分.
11. 抛物线的焦点坐标为________.
12. 在平面直角坐标系中,角与角均以为始边,它们终边关于原点对称.若,则的最大值为________.
13. 若直线与双曲线只有一个公共点,则的一个取值为 ________.
14. 汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为 ,且斛量器的高为,则斗量器的高为______,升量器的高为________.
15. 设与是两个不同的无穷数列,且都不是常数列.记集合,给出下列4个结论:
①若与均等差数列,则M中最多有1个元素;
②若与均为等比数列,则M中最多有2个元素;
③若为等差数列,为等比数列,则M中最多有3个元素;
④若为递增数列,为递减数列,则M中最多有1个元素.
其中正确结论的序号是______.
三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.
16. 在中,内角的对边分别为,为钝角,,.
(1)求;
(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在,求的面积.
条件①:;条件②:;条件③:.
注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.
17. 如图,在四棱锥中,,,,点在上,且,.
(1)若为线段中点,求证:平面.
(2)若平面,求平面与平面夹角的余弦值.
18. 某保险公司为了了解该公司某种保险产品索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:
假设:一份保单保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.
(1)估计一份保单索赔次数不少于2的概率;
(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.
(i)记为一份保单的毛利润,估计的数学期望;
(ⅱ)如果无索赔的保单的保费减少,有索赔的保单的保费增加,试比较这种情况下一份保单毛利润的数学期望估计值与(i)中估计值的大小.(结论不要求证明)
19. 已知椭圆:,以椭圆的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点且斜率存在的直线与椭圆交于不同的两点,过点和的直线与椭圆的另一个交点为.
(1)求椭圆的方程及离心率;
(2)若直线BD的斜率为0,求t的值.
20. 设函数,直线是曲线在点处的切线.
(1)当时,求的单调区间.
(2)求证:不经过点.
(3)当时,设点,,,为与轴的交点,与分别表示与的面积.是否存在点使得成立?若存在,这样的点有几个?
(参考数据:,,)
21. 已知集合.给定数列,和序列,其中,对数列进行如下变换:将的第项均加1,其余项不变,得到的数列记作;将的第项均加1,其余项不变,得到数列记作;……;以此类推,得到,简记为.
(1)给定数列和序列,写出;
(2)是否存在序列,使得为,若存在,写出一个符合条件;若不存在,请说明理由;
(3)若数列的各项均为正整数,且为偶数,求证:“存在序列,使得的各项都相等”的充要条件为“”.
参考答案
一、选择题
1. 【答案】C
【解析】由题意得,故选:C.
2. 【答案】C
【解析】由题意得,故选:C.
3. 【答案】D
【解析】由题意得,即,
则其圆心坐标为,则圆心到直线的距离为.
故选:D.
4. 【答案】A
【解析】的二项展开式为,
令,解得,故所求即为.
故选:A.
5. 【答案】B
【解析】因为,可得,即,
可知等价于,
若或,可得,即,可知必要性成立;
若,即,无法得出或,
例如,满足,但且,可知充分性不成立;
综上所述,“”是“且”的必要不充分条件.
故选:B.
6. 【答案】B
【解析】由题意可知:为的最小值点,为的最大值点,
则,即,且,所以.
故选:B.
7. 【答案】D
【解析】由题意得,则,
即,所以.
故选:D
8. 【答案】D
【解析】如图,底面为正方形,
当相邻的棱长相等时,不妨设,
分别取的中点,连接,
则,且,平面,
可知平面,且平面,所以平面平面,
过作的垂线,垂足为,即,
由平面平面,平面,所以平面,
由题意可得:,则,即,
则,可得,所以四棱锥的高为.
当相对的棱长相等时,不妨设,,
因为,此时不能形成三角形,与题意不符,这样情况不存在,故选:D.
9. 【答案】B
【解析】由题意不妨设,因为函数是增函数,所以,即,
对于选项AB:可得,即,
根据函数是增函数,所以,故B正确,A错误;
对于选项D:例如,则,
可得,即,故D错误;
对于选项C:例如,则,
可得,即,故C错误,
故选:B.
10. 【答案】C
【解析】对任意给定,则,且,
可知,即,
再结合x的任意性,所以所求集合表示的图形即为平面区域,
如图阴影部分所示,其中,
可知任意两点间距离最大值;
阴影部分面积.
故选:C.
第二部分(非选择题 共110分)
二、填空题
11.【答案】
【解析】由题意抛物线的标准方程为,所以其焦点坐标为.
故答案为:.
12. 【答案】
【解析】由题意,从而,
因为,所以的取值范围是,的取值范围是,
当且仅当,即时,取得最大值,且最大值为.
故答案为:.
13. 【答案】(或,答案不唯一)
【解析】联立,化简并整理得:,
由题意得或,
解得或无解,即,经检验,符合题意.
故答案为:(或,答案不唯一).
14. 【答案】①. 23;②.
【解析】设升量器的高为,斗量器的高为(单位都是),则,故,.
故答案为:.
15. 【答案】①③④
【解析】对于①,因为均为等差数列,故它们的散点图分布在直线上,
而两条直线至多有一个公共点,故中至多一个元素,故①正确.
对于②,取则均为等比数列,
但当为偶数时,有,此时中有无穷多个元素,故②错误.
对于③,设,,
若中至少四个元素,则关于的方程至少有4个不同的正数解,
若,则由和的散点图可得关于的方程至多有两个不同的解,矛盾;
若,考虑关于的方程奇数解的个数和偶数解的个数,
当有偶数解,此方程即为,
方程至多有两个偶数解,且有两个偶数解时,
否则,因单调性相反,
方程至多一个偶数解,
当有奇数解,此方程即为,
方程至多有两个奇数解,且有两个奇数解时即
否则,因单调性相反,
方程至多一个奇数解,
因为,不可能同时成立,
故不可能有4个不同的整数解,即M中最多有3个元素,故③正确.
对于④,因为为递增数列,为递减数列,前者散点图呈上升趋势,
后者的散点图呈下降趋势,两者至多一个交点,故④正确.
故答案为:①③④.
三、解答题
16. 【答案】(1);(2)选择①无解;选择②和③△ABC面积均为.
【解析】(1)由题意得,因为为钝角,
则,则,则,解得,
因为为钝角,则.
(2)选择①,则,因为,则为锐角,则,
此时,不合题意,舍弃;
选择②,因为为三角形内角,则,
则代入得,解得,
,
则.
选择③,则有,解得,
则由正弦定理得,即,解得,
因为为三角形内角,则,
则
,
则
17. 【答案】(1)证明见解析;(2)
【解析】(1)取的中点为,接,则,
而,故,故四边形为平行四边形,
故,而平面,平面,
所以平面.
(2)因为,故,故,
故四边形为平行四边形,故,所以平面,
而平面,故,而,
故建立如图所示的空间直角坐标系,
则,
则
设平面的法向量为,
则由可得,取,
设平面的法向量为,
则由可得,取,
故,故平面与平面夹角的余弦值为
18. 【答案】(1);(2)(i)0.122万元;(ii) 这种情况下一份保单毛利润的数学期望估计值大于(i)中估计值
【解析】(1)设为“随机抽取一单,赔偿不少于2次”,
由题设中的统计数据可得.
(2)(ⅰ)设为赔付金额,则可取,
由题设中的统计数据可得,
,,
,
故
故(万元).
(ⅱ)由题设保费的变化为,
故(万元),
从而.
19. 【答案】(1);(2)
【解析】(1)由题意,从而,
所以椭圆方程为,离心率为;
(2)直线斜率不为0,否则直线与椭圆无交点,矛盾,
从而设,,
联立,化简并整理得,
由题意,即应满足,
所以,
若直线斜率为0,由椭圆的对称性可设,
所以,在直线方程中令,
得,
所以,
此时应满足,即应满足或,
综上所述,满足题意,此时或.
20. 【答案】(1)单调递减区间为,单调递增区间为;(2)证明见解析;(3)2;
【解析】(1),
当时,;当,;
在上单调递减,在上单调递增.
则的单调递减区间为,单调递增区间为.
(2),切线的斜率为,
则切线方程为,
将代入则,
即,则,,
令,
假设过,则在存在零点.
,在上单调递增,,
在无零点,与假设矛盾,故直线不过.
(3)时,.
,设与轴交点为,
时,若,则此时与必有交点,与切线定义矛盾.
由(2)知.所以,
则切线的方程为,
令,则.
,则,
,记,
满足条件的有几个即有几个零点.
,
当时,,此时单调递减;
当时,,此时单调递增;
当时,,此时单调递减;
因为,
,
所以由零点存在性定理及的单调性,在上必有一个零点,在上必有一个零点,
综上所述,有两个零点,即满足的有两个.
21.【答案】(1);
(2)不存在符合条件的,理由见解析;
(3)证明见解析
【解析】(1)因为数列,
由序列可得;
由序列可得;
由序列可得;
所以.
(2)解法一:假设存在符合条件的,可知的第项之和为,第项之和为,则,而该方程组无解,故假设不成立,故不存在符合条件的;
解法二:由题意可知:对于任意序列,所得数列之和比原数列之和多4,
假设存在符合条件的,且,
因为,即序列共有8项,
由题意可知:,
检验可知:当时,上式不成立,
即假设不成立,所以不存在符合条件的.
(3)解法一:我们设序列为,特别规定.
必要性:
若存在序列,使得的各项都相等.
则,所以.
根据的定义,显然有,这里,.
所以不断使用该式就得到,必要性得证.
充分性:
若.
由已知,为偶数,而,所以也是偶数.
我们设是通过合法的序列的变换能得到的所有可能的数列中,使得最小的一个.
上面已经说明,这里,.
从而由可得.
同时,由于总是偶数,所以和的奇偶性保持不变,从而和都是偶数.
下面证明不存在使得.
假设存在,根据对称性,不妨设,,即.
情况1:若,则由和都是偶数,知.
对该数列连续作四次变换后,新的相比原来的减少,这与的最小性矛盾;
情况2:若,不妨设
情况2-1:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾;
情况2-2:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾.
这就说明无论如何都会导致矛盾,所以对任意的都有.
假设存在使得,则是奇数,所以都是奇数,设为.
则此时对任意,由可知必有.
而和都是偶数,故集合中的四个元素之和为偶数,对该数列进行一次变换,则该数列成为常数列,新的等于零,比原来的更小,这与的最小性矛盾.
综上,只可能,而,故是常数列,充分性得证.
解法二:由题意可知:中序列的顺序不影响的结果,
且相对于序列也是无序的,
(ⅰ)若,
不妨设,则,
①当,则,
分别执行个序列、个序列,
可得,为常数列,符合题意;
②当中有且仅有三个数相等,不妨设,则,
即,
分别执行个序列、个序列
可得,
即,
因为为偶数,即为偶数,
可知的奇偶性相同,则,
分别执行个序列,,,,
可得,
为常数列,符合题意;
③若,则,即,
分别执行个、个,
可得,
因为,
可得,
即转为①,可知符合题意;
④当中有且仅有两个数相等,不妨设,则,
即,
分别执行个、个,
可得,
且,可得,
因为为偶数,可知的奇偶性相同,
则为偶数,
且,即转②,可知符合题意;
⑤若,则,即,
分别执行个、个,
可得,
且,可得,
因为为偶数,
则为偶数,
且,即转为④,可知符合题意;
综上所述:若,则存在序列,使得为常数列;
(ⅱ)若存在序列,使得为常数列,
因为对任意,均有成立,
若为常数列,则,
所以;
综上所述:“存在序列,使得为常数列”的充要条件为“”.
赔偿次数
0
1
2
3
4
单数
高考数学2024年北京高考数学真题平行卷(提升)含解析答案: 这是一份高考数学2024年北京高考数学真题平行卷(提升)含解析答案,共20页。
高考数学2024年北京高考数学真题平行卷(巩固)含解析答案: 这是一份高考数学2024年北京高考数学真题平行卷(巩固)含解析答案,共17页。
高考数学2024年北京高考数学真题平行卷(基础)含解析答案: 这是一份高考数学2024年北京高考数学真题平行卷(基础)含解析答案,共17页。