所属成套资源:新高考数学一轮复习 讲与练 (2份打包,原卷版+解析版)
新高考数学一轮复习 讲与练第20讲 数列综合(2份打包,原卷版+解析版)
展开
这是一份新高考数学一轮复习 讲与练第20讲 数列综合(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第20讲数列综合原卷版doc、新高考数学一轮复习讲与练第20讲数列综合解析版doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
一、知识梳理
1.特殊数列的求和公式
(1)等差数列的前n项和公式:
Sn=eq \f(n(a1+an),2)=na1+eq \f(n(n-1),2)d.
(2)等比数列的前n项和公式:
Sn=eq \b\lc\{(\a\vs4\al\c1(na1,q=1,,\f(a1-anq,1-q)=\f(a1(1-qn),1-q),q≠1.))
2.数列求和的几种常用方法
(1)分组转化法
把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(2)裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
(3)错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.
(4)倒序相加法
如果一个数列{an}的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.
考点和典型例题
1、分组转化求和
【典例1-1】(2022·江西·临川一中模拟预测(文))已知数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 为数列的前n项和, SKIPIF 1 < 0 ( )
A.1008B.1009C.1010D.1011
【典例1-2】(2022·江苏常州·模拟预测)己知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 之间插入n个1,构成数列 SKIPIF 1 < 0 : SKIPIF 1 < 0 ,则数列 SKIPIF 1 < 0 的前100项的和为( )
A.178B.191C.206D.216
【典例1-3】(2022·河北沧州·二模)(多选)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,记 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,则( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【典例1-4】(2022·湖北·襄阳五中二模)已知数列 SKIPIF 1 < 0 、 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,其前 SKIPIF 1 < 0 项和分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,(1)记数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和分别为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 =_________;(2)记最接近 SKIPIF 1 < 0 的整数为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 _________.
【典例1-5】(2022·海南省直辖县级单位·三模)已知等差数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 是等比数列, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,设数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0
【典例1-6】(2022·湖北武汉·模拟预测)已知数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 且 SKIPIF 1 < 0 .
(1)求证:数列 SKIPIF 1 < 0 为等比数列;
(2)求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
2、裂项相消法求和
【典例2-1】(2022·全国·哈师大附中模拟预测(文))已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,则数列 SKIPIF 1 < 0 的前5项和为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【典例2-2】(2022·安徽·合肥一六八中学模拟预测(文))已知数列 SKIPIF 1 < 0 的各项互异,且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C.2D.4
【典例2-3】(2022·湖南·长沙县第一中学模拟预测)已知等比数列{ SKIPIF 1 < 0 }各项均为正数, SKIPIF 1 < 0 , SKIPIF 1 < 0 、 SKIPIF 1 < 0 为方程 SKIPIF 1 < 0 (m为常数)的两根,数列{ SKIPIF 1 < 0 }的前n项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前2022项和为_________.
【典例2-4】(2022·广东·模拟预测)已知函数 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 .若函数 SKIPIF 1 < 0 的图像与x轴恰好有 SKIPIF 1 < 0 个不同的交点,则 SKIPIF 1 < 0 _________.
【典例2-5】(2022·重庆·模拟预测)已知数列 SKIPIF 1 < 0 的前n项和为Sn, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且
SKIPIF 1 < 0
(1)求数列{an}的通项公式;
(2)设 SKIPIF 1 < 0 ,数列{bn}的前n项和为Tn,求使得Tn>0的n的最大值.
【典例2-6】(2022·四川·绵阳中学实验学校模拟预测(文))已知 SKIPIF 1 < 0 是数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和,且 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通项公式.
(2)若 SKIPIF 1 < 0 , SKIPIF 1 < 0 是 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和,求 SKIPIF 1 < 0 .
3、错位相减法求和
【典例3-1】(2022·全国·模拟预测)在数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,且对任意 SKIPIF 1 < 0 , SKIPIF 1 < 0 恒成立,则实数 SKIPIF 1 < 0 的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【典例3-2】(2022·上海·模拟预测)设 SKIPIF 1 < 0 是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线 SKIPIF 1 < 0 相切,对每一个正整数n,圆 SKIPIF 1 < 0 都与圆 SKIPIF 1 < 0 相互外切,以 SKIPIF 1 < 0 表示圆 SKIPIF 1 < 0 的半径,已知 SKIPIF 1 < 0 为递增数列,若 SKIPIF 1 < 0 ,则数列 SKIPIF 1 < 0 的前n项和为_________.
【典例3-3】(2022·江苏·南京市天印高级中学模拟预测)已知数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)证明数列 SKIPIF 1 < 0 为等比数列,并求出数列 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
【典例3-4】(2022·山东烟台·三模)已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 ;
(2)设数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 恒成立,求 SKIPIF 1 < 0 的取值范围.
【典例3-5】(2022·山东淄博·三模)设 SKIPIF 1 < 0 为等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和,已知 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列.
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
相关试卷
这是一份新高考数学一轮复习 讲与练第27讲 椭圆(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第27讲椭圆原卷版doc、新高考数学一轮复习讲与练第27讲椭圆解析版doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份新高考数学一轮复习 讲与练第12讲 导数的综合应用(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第12讲导数的综合应用原卷版doc、新高考数学一轮复习讲与练第12讲导数的综合应用解析版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份新高考数学一轮复习 讲与练第12练 导数的综合问题(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第12练导数的综合问题原卷版doc、新高考数学一轮复习讲与练第12练导数的综合问题解析版doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。