新高考数学一轮复习 讲与练第32讲 计数原理(2份打包,原卷版+解析版)
展开知识梳理
基本计数原理
1.分类加法计数原理
完成一件事,如果有n类办法,且:第一类办法中有m1种不同的方法,第二类办法中有m2种不同的方法……第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法.
2.分步乘法计数原理
完成一件事,如果需要分成n个步骤,且:做第一步有m1种不同的方法,做第二步有m2种不同的方法……做第n步有mn种不同的方法.那么完成这件事共有N=m1×m2×…×mn种不同的方法.
3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成了才算完成这件事.
排列与组合
1.排列与组合的概念
2.排列数与组合数
(1)从n个不同对象中取出m(m≤n)个对象的所有排列的个数,称为从n个不同对象中取出m个对象的排列数,用符号Aeq \\al(m,n)表示.
(2)从n个不同对象中取出m(m≤n)个对象的所有组合的个数,称为从n个不同对象中取出m个对象的组合数,用符号Ceq \\al(m,n)表示.
3.排列数、组合数的公式及性质
二项式定理
1.二项式定理
(1)二项式定理:(a+b)n=Ceq \\al(0,n)an+Ceq \\al(1,n)an-1b+…+Ceq \\al(k,n)an-kbk+…+Ceq \\al(n,n)bn(n∈N*);
(2)通项公式:Tk+1=Ceq \\al(k,n)an-kbk,它表示第k+1项;
(3)二项式系数:二项展开式中各项的系数Ceq \\al(0,n),Ceq \\al(1,n),…,Ceq \\al(n,n).
2.二项式系数的性质
3.各二项式系数和
(1)(a+b)n展开式的各二项式系数和:Ceq \\al(0,n)+Ceq \\al(1,n)+Ceq \\al(2,n)+…+Ceq \\al(n,n)=2n.
(2)奇数项的二项式系数的和等于偶数项的二项式系数的和,即Ceq \\al(0,n)+Ceq \\al(2,n)+Ceq \\al(4,n)+…=Ceq \\al(1,n)+Ceq \\al(3,n)+Ceq \\al(5,n)+…=2n-1.
考点和典型例题
1、基本计数原理
【典例1-1】(2022·湖北·天门市教育科学研究院模拟预测)甲乙丙丁四个同学星期天选择到东湖公园,西湖茶经楼,历史博物馆和北湖公园其中一处去参观游玩,其中茶经楼必有人去,则不同的参观方式共有( )种.
A.24B.96C.174D.175
【典例1-2】(2023·山西大同·高三阶段练习)高中数学新教材有必修一和必修二,选择性必修有一、二、三共5本书,把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是( )
A.72B.144C.48D.36
【典例1-3】(2023·全国·高三专题练习(理))2010年世界杯足球赛预计共有24个球队参加比赛,第一轮分成6个组进行单循环赛(在同一组的每两个队都要比赛),决出每个组的一、二名,然后又在剩下的12个队中按积分取4个队(不比赛),共计16个队进行淘汰赛来确定冠亚军,则一共需比赛( )场次.
A.53B.52C.51D.50
【典例1-4】(2022·河南·濮阳一高高三阶段练习(理))某医院从7名男医生(含一名主任医师),6名女医生(含一名主任医师)中选派4名男医生和3名女医生支援抗疫工作,若要求选派的医生中有主任医师,则不同的选派方案数为( )
A.350B.500C.550D.700
【典例1-5】(2023·全国·高三专题练习)《数术记遗》是《算经十书》中的一部,相传是汉末徐岳所著.该书记述了我国古代 SKIPIF 1 < 0 种算法,分别是:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算和计数.某中学研究性学习小组有甲、乙、丙、丁四人,该小组拟全部收集九宫算、运筹算、了知算、成数算和把头算等 SKIPIF 1 < 0 种算法的相关资料,要求每人至少收集其中一种,且每种算法只由一个人收集,但甲不收集九宫算和了知算的资料,则不同的分工收集方案共有( )种.
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
2、排列与组合
【典例2-1】(2023·全国·高三专题练习)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )
A.12种B.24种C.36种D.48种
【典例2-2】(2023·全国·高三专题练习(理))教育部于2022年开展全国高校书记校长访企拓岗促就业专项行动,某市3所高校的校长计划拜访当地企业,共有4家企业可供选择.若每名校长拜访3家企业,每家企业至少接待1名校长,则不同的安排方法共有( )
A.60种B.64种C.72种D.80种
【典例2-3】(2022·全国·高三专题练习)某校在高一开展了选课走班的活动,已知该校提供了3门选修课供学生选择,现有5名同学参加选课走班的活动,要求这5名同学每人选修一门课程且每门课程都有人选,则5名同学选课的种数为( )
A.150B.180C.240D.540
【典例2-4】(2023·全国·高三专题练习)北京2022年冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”一亮相,好评不断.为了宣传2022年北京冬奥会和冬残奥会,某学校决定派小明和小李等5名志愿者将两个吉祥物安装在学校的体育广场,每人参与且只参与一个吉祥物的安装,每个吉祥物都至少由两名志愿者安装.若小明和小李必须安装不同的吉祥物,则不同的安排方案有( )
A.6种B.12种C.18种D.24种
【典例2-5】(2022·贵州·贵阳一中高三阶段练习(理))贵阳一中体育节中,乒乓球球单打12强中有4个种子选手,将这12人平均分成3个组(每组4个人)、则4个种子选手恰好被分在同一组的分法有( )
A.21B.42C.35D.70
3、二项式定理
【典例3-1】(2022·河南洛阳·模拟预测(理)) SKIPIF 1 < 0 的展开式中各二项式系数之和为64,则展开式中的常数项为( )
A. SKIPIF 1 < 0 540B.135C.18D.1215
【典例3-2】(2022·全国·高三专题练习) SKIPIF 1 < 0 按 SKIPIF 1 < 0 降幕排列的展开式中,系数最大的项是( )
A.第 SKIPIF 1 < 0 项和第 SKIPIF 1 < 0 项B.第 SKIPIF 1 < 0 项
C.第 SKIPIF 1 < 0 项和第 SKIPIF 1 < 0 项D.第 SKIPIF 1 < 0 项
【典例3-3】(2022·全国·高三专题练习)若 SKIPIF 1 < 0 的展开式中,某一项的系数为7,则展开式中第三项的系数是( )
A.7B.21C.35D.21或35
【典例3-4】(2023·全国·高三专题练习)二项式 SKIPIF 1 < 0 的展开式中,含 SKIPIF 1 < 0 项的二项式系数为( )
A.84B.56C.35D.21
【典例3-5】(2022·全国·高三专题练习)已知 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
A.992B.-32C.-33D.496
名称
定义
排列
从n个不同对象中取出m(m≤n)个对象
并按照一定的顺序排成一列,称为从n个不同对象中取出m个对象的一个排列
组合
并成一组,称为从n个不同对象中取出m个对象的一个组合
公式
(1)Aeq \\al(m,n)=n(n-1)(n-2)…(n-m+1)=eq \f(n!,(n-m)!).
(2)Ceq \\al(m,n)=eq \f(Aeq \\al(m,n),Aeq \\al(m,m))=eq \f(n(n-1)(n-2)…(n-m+1),m!)
=eq \f(n!,m!(n-m)!)(n,m∈N*,且m≤n).特别地Ceq \\al(0,n)=1
性质
(1)0!=1;Aeq \\al(n,n)=n!.
(2)Ceq \\al(m,n)=Ceq \\al(n-m,n);Ceq \\al(m+1,n)+Ceq \\al(m,n)=Ceq \\al(m+1,n+1)
性质
性质描述
对称性
与首末等距离的两个二项式系数相等,即Ceq \\al(m,n)=Ceq \\al(n-m,n)
增减性
二项式系数Ceq \\al(k,n)
当k<eq \f(n+1,2)(n∈N*)时,是递增的
当k>eq \f(n+1,2)(n∈N*)时,是递减的
二项式
系数最大值
当n为偶数时,中间的一项取得最大值
当n为奇数时,中间的两项与相等且取得最大值
新高考数学一轮复习 讲与练第27讲 椭圆(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习 讲与练第27讲 椭圆(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第27讲椭圆原卷版doc、新高考数学一轮复习讲与练第27讲椭圆解析版doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
新高考数学一轮复习 讲与练第26讲 圆的方程(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习 讲与练第26讲 圆的方程(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第26讲圆的方程原卷版doc、新高考数学一轮复习讲与练第26讲圆的方程解析版doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
新高考数学一轮复习 讲与练第17讲 复数(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习 讲与练第17讲 复数(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第17讲复数原卷版doc、新高考数学一轮复习讲与练第17讲复数解析版doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。