所属成套资源:新高考数学一轮复习核心考点讲与练 (2份打包,原卷版+解析版)
新高考数学一轮复习核心考点讲与练考点24 排列与组合(2份打包,原卷版+解析版)
展开
这是一份新高考数学一轮复习核心考点讲与练考点24 排列与组合(2份打包,原卷版+解析版),文件包含新高考一轮复习核心考点讲与练考点24排列与组合原卷版doc、新高考一轮复习核心考点讲与练考点24排列与组合解析版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
1.排列与组合的概念
2.排列数与组合数
(1)从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数.
(2)从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.
3.排列数、组合数的公式及性质
1.求解排列应用问题的6种主要方法
2.两类有附加条件的组合问题的解法
(1)“含有”或“不含有”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中去选取.
(2)“至少”或“最多”含有几个元素的组合题型:解这类题目必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,通常用直接法分类复杂时,用间接法求解.
3.排列、组合问题的求解方法与技巧
(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题倍除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.
4.解答排列、组合综合问题的一般思路和注意点
(1)一般思路:“先选后排”,也就是把符合题意的元素都选出来,再对元素或位置进行排列.
(2)注意点:①元素是否有序是区分排列与组合的基本方法,元素无序是组合问题,元素有序是排列问题.
②对于有多个限制条件的复杂问题,应认真分析每个限制条件,然后再考虑是分类还是分步,这是处理排列、组合的综合问题的一般方法.
排列
1.(2021哈六中高三上学期期中考试数学(理))用1,2,3,4,5,6六个数字组成六位数,其中奇数不相邻且1、2必须相邻,则满足要求的六位数共有( )个
A. 72B. 96C. 120D. 288
2.(2021湖南省永州市高三上第一次适应性考试)永州是一座有着两千多年悠久历史的湘南古邑,民俗文化资源丰富.在一次民俗文化表演中,某部门安排了《东安武术》、《零陵渔鼓》、《瑶族伞舞》、《祁阳小调》、《道州调子戏》、《女书表演》六个节目,其中《祁阳小调》与《道州调子戏》不相邻,则不同的安排种数为( )
A.480 B.240 C.384 D.1440
3.(2021新疆喀什地区莎车县一中高三上期中)7个人排成一排准备照一张合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有( )
A. 480种B. 720种C. 960种D. 1200种
组合
1.. 某中学为了发挥青年志原者模范带头作用,利用周末开展青年志愿者进社区服务活动.该校决定成立一个含有甲、乙两人的4人青年志愿者社区服务团队,现把4人分配到和两个社区去服务,若每个社区都有志愿者,每个志愿者只服务一个社区,且甲、乙两人不同在一个社区的分配方案种类有( )
A.4 B.8 C.10 D.12
2. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )
A. 60种B. 120种C. 240种D. 480种
排列组合的综合运用
1. 从将标号为1,2,3,…,9的9个球放入标号为1,2,3,…,9的9个盒子里,每个盒内只放一个球,恰好3个球的标号与其所在盒子的标号不一致的放入方法种数为( )
A. 84B. 168C. 240D. 252
2.(2021宁夏银川一中高三上学期第二次月考) 有12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是( )
A.168 B.260 C.840 D.560
3.(2021江苏省南通市海安高三第一次月考)为了更好的了解党的历史,宣传党的知识,传颂英雄事迹.某校团支部6人组建了党史宣讲,歌曲演唱,诗歌创作三个小组,每组2人,其中甲不会唱歌,乙不能胜任诗歌创作,则组建方法有( )种
A. 60B. 72C. 30D. 42
1.(2021年全国高考乙卷数学)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )
A. 60种B. 120种C. 240种D. 480种
2.(2020年全国统一高考(新课标Ⅱ))4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.
一、单选题
1.(2022·全国·模拟预测)若从甲、乙2名女志愿者和6名男志愿者中选出正组长1人,副组长1人,普通组员2人到北京冬奥会花样滑冰场馆服务,且要求女志愿者甲不能做正组长,女志愿者乙不能做普通组员,则不同的选法种数为( )
A. 210B. 390C. 555D. 660
2.(2021·全国·模拟预测)为推动党史学习教育各项工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委计划将中心组学习、专题报告会、党员活动日、主题班会、主题团日这五种活动分5个阶段安排,以推动党史学习教育工作的进行.若中心组学习必须安排在前2个阶段,且主题班会、主题团日安排的阶段相邻,则不同的安排方案共有( )
A.12种B.28种C.20种D.16种
3.(2022·广东汕头·一模) 有4名大学生志愿者参加2022年北京冬奥会志愿服务.冬奥会志愿者指挥部随机派这4名志愿者参加冰壶、短道速滑、花样滑冰3个项目比赛的志愿服务,则每个项目至少安排一名志愿者进行志愿服务的概率( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
4.(2022·山东潍坊·一模)第十三届冬残奥会于2022年3月4日至3月13日在北京举行.现从4名男生,2名女生中选3人分别担任冬季两项、单板滑雪、轮椅冰壶志愿者,且至多有1名女生被选中,则不同的选择方案共有( ).
A. 72种B. 84种C. 96种D. 124种
5.(2022·重庆·一模)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )
A. 60种B. 120种C. 240种D. 480种
6.(2022·重庆市求精中学校一模)北京2022年冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”一亮相,好评不断,这是一次中国文化与奥林匹克精神的完美结合,是一次现代设计理念的传承与突破.为了宣传2022年北京冬奥会和冬残奥会,某学校决定派小明和小李等 SKIPIF 1 < 0 名志愿者将两个吉祥物安装在学校的体育广场,若小明和小李必须安装同一个吉祥物,且每个吉祥物都至少由两名志愿者安装,则不同的安装方案种数为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
7.(2022·全国·高三专题练习)当前,新冠肺炎疫情进入常态化防控新阶段,防止疫情输入的任务依然繁重,疫情防控工作形势依然严峻、复杂.某地区安排A,B,C,D,E五名同志到三个地区开展防疫宣传活动,每个地区至少安排一人,且A,B两人安排在同一个地区,C,D两人不安排在同一个地区,则不同的分配方法总数为( )
A. 30种B. 36种C. 42种D. 64种
8.(2022·全国·高三专题练习)为迎接2021年9月15日-9月27日的第十四届全国运动会,某单位准备组织一场混合双打比赛,现从6名男乒乓球爱好者和5名女乒乓球爱好者中各选2名选手进行一场混合双打比赛,则不同的选择方法有( )
A. 150种B. 300种C. 450种D. 600种
9.(2022·全国·高三专题练习) “女排精神”是中国女子排球队顽强战斗、勇敢拼搏精神的总概括,她们在世界杯排球赛中凭着顽强战斗、勇敢拼搏的精神,五次获得世界冠军,为国争光.2019年女排世界杯于9月14日至9月29日在日本举行,中国队以上届冠军的身份出战,最终以11战全胜且只丢3局的成绩成功卫冕世界杯冠军,为中华人民共和国70华诞献上最及时的贺礼.朱婷连续两届当选女排世界杯MVP,她和颜妮、丁霞、王梦洁共同入选最佳阵容,赛后4人和主教练郎平站一排合影留念,已知郎平站在最中间,她们4人随机站于两侧,则朱婷和王梦洁站于郎平同一侧的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
二、多选题
10.(2022·江苏常州·高三期末)如图,用4种不同的颜色,对四边形中的四个区域进行着色,要求有公共边的两个区域不能用同一种颜色,则不同的着色方法数为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
11.(2022·重庆市朝阳中学高三开学考试)现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,则以下说法错误的是( )
A. 若每人都安排一项工作,则不同的方法数为 SKIPIF 1 < 0
B. 若每项工作至少有1人参加,则不同的方法数为 SKIPIF 1 < 0
C. 每项工作至少有1人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是 SKIPIF 1 < 0
D. 如果司机工作不安排,其余三项工作至少安排1人,则这5名同学全部被安排的不同方法数为 SKIPIF 1 < 0
三、填空题
12.(2022·四川·宜宾市叙州区第一中学校二模(理))某地区突发传染病公共卫生事件,广大医务工作者逆行而上,纷纷志愿去一线抗击疫情.某医院呼吸科共有 SKIPIF 1 < 0 名医生, SKIPIF 1 < 0 名护士,其中 SKIPIF 1 < 0 名医生为科室主任, SKIPIF 1 < 0 名护士为护士长.根据组织安排,从中选派 SKIPIF 1 < 0 人去支援抗疫一线,要求医生和护士均有,且科室主任和护士长至少有 SKIPIF 1 < 0 人参加,则不同的选派方案共有_____种.
13.(2022·湖南岳阳·一模)有唱歌、跳舞、小品、杂技、相声五个节目制成一个节目单,其中小品、相声不相邻且相声、跳舞相邻的节目单有______种.(结果用数字作答)
14.(2022·湖南湖南·二模)一次考试后,学校准备表彰在该次考试中排名前10位的同学,其中有2位是高三(1)班的同学,现要选4人去“表彰会”上作报告,若高三(1)班的2人同时参加,则2人作报告的顺序不能相邻,则要求高三(1)班至少有1人参加的作报告的方案共有___________种.(用数字作答)
15.(2022·浙江·模拟预测)某九位数的各个数位由数字1,2,3组成,其中每个数字各出现3次,且数字1和数字2不能相邻,则符合条件的不同九位数的个数是___.(用数字作答)
16.(2022·江西鹰潭·一模(理))2021年12月,南昌最美地铁4号线开通运营,甲、乙、丙、丁四位同学决定乘坐地铁去观洲、人民公园、新洪城大市场三个地方游览,每人只能去一个地方,人民公园一定要有人去,则不同游览方案的种数为______.
17.(2022·浙江温州·高三开学考试)将标有1,2,3,4,5,6的6个球放入A,B,C三个盒子,每个盒子放两个球,其中1号球不放A盒子中,2号和3号球都不放B盒子中,则共有__________种不同的放法(用数字作答).
18.(2022·全国·高三专题练习)现有15个省三好学生名额分给1、2、3、4共四个班级,其中1班至少2个名额,2班、4班每班至少3个名额,3班最多2个名额,则共有_________种不同分配方案.
19.(2022·全国·高三专题练习(理))某公司在元宵节组织了一次猜灯谜活动,主持人事先将10条不同灯谜分别装在了如图所示的10个灯笼中,猜灯谜的职员每次只能任选每列最下面的一个灯笼中的谜语来猜(无论猜中与否,选中的灯笼就拿掉),则这10条灯谜依次被选中的所有不同顺序方法数为____________.(用数字作答)
20.(2022·全国·高三专题练习)如图所示,某货场有三堆集装箱,每堆2个,现需要全部装运,每次只能从其中一堆取最上面的一个集装箱,则在装运的过程中不同取法的种数是____________(用数字作答).
21.(2022·河北保定·一模)2022年北京冬奥会的某滑雪项目中有三个不同的运动员服务点,现需将10名志愿者分配到这三个运动员服务点处,每处需要至少2名至多4名志愿者,则不同的安排方法一共有______种.
22.(2022·重庆八中模拟预测)《数术记遗》是《算经十书》中的一部,相传是汉末徐岳所著.该书记述了我国古代14种算法,分别是:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算和计数.某中学研究性学习小组有甲、乙、丙、丁四人,该小组拟全部收集九宫算、运筹算、了知算、成数算和把头算等5种算法的相关资料,要求每人至少收集其中一种,且每种算法只由一个人收集,但甲不收集九宫算和了知算的资料,则不同的分工收集方案共有__________种.
23.(2022·全国·高三专题练习)清华大学有6名同学准备在北京2022年冬奥会期间担任志愿者,去A,B两个场馆进行工作.现需制定工作方案,将6人分成2组,每组3人,每组各指定一名组长,再将两组分别指派到A,B两个场馆,则不同的工作方案数为___________.
24.(2022·贵州贵阳·一模(理))在2022年北京冬奥会和冬残奥会城市志愿者的招募项目中,有一个“国际服务”项目截止到2022年1月25日还有8个名额空缺,需要分配给3个单位,则每个单位至少一个名额且各单位名额互不相同的分配方法种数是_____________.
25(2022·全国·高三专题练习)甲、乙、丙、丁4个小球放入编号分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 的四个盒子中,恰好只有一个空盒,若乙只能放入 SKIPIF 1 < 0 盒,甲不能放入 SKIPIF 1 < 0 盒,则分配方法共有_________种.(用数字作答)
26(2022·全国·高三专题练习(理))中国古代的五经是指:《诗经》、《尚书》、《礼记》、《周易》、《春秋》,甲、乙、丙、丁、戊5名同学分别选取了其中一本不同的书作为课外兴趣研读,若甲乙都没有选《诗经》,乙也没选《春秋》,则5名同学所有可能的选择有___________.
名称
定义
排列
从n个不同元素中取出m(m≤n)个不同元素
按照一定的顺序排成一列
组合
合成一组
公式
(1)Aeq \\al(m,n)=n(n-1)(n-2)…(n-m+1)=eq \f(n!,(n-m)!).
(2)Ceq \\al(m,n)=eq \f(Aeq \\al(m,n),Aeq \\al(m,m))=eq \f(n(n-1)(n-2)…(n-m+1),m!)
=eq \f(n!,m!(n-m)!)(n,m∈N+,且m≤n).特别地Ceq \\al(0,n)=1
性质
(1)0!=1;Aeq \\al(n,n)=n!.
(2)Ceq \\al(m,n)=Ceq \\al(n-m,n);Ceq \\al(m,n+1)=Ceq \\al(m,n)+Ceq \\al(m-1,n)
直接法
把符合条件的排列数直接列式计算
优先法
优先安排特殊元素或特殊位置
捆绑法
把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列
插空法
对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中
定序问题
除法处理
对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列
间接法
正难则反、等价转化的方法
相关试卷
这是一份新高考数学一轮复习核心考点讲与练考点21 双曲线(2份打包,原卷版+解析版),文件包含新高考一轮复习核心考点讲与练考点21双曲线原卷版doc、新高考一轮复习核心考点讲与练考点21双曲线解析版doc等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
这是一份新高考数学一轮复习核心考点讲与练考点20 椭圆(2份打包,原卷版+解析版),文件包含新高考一轮复习核心考点讲与练考点20椭圆原卷版doc、新高考一轮复习核心考点讲与练考点20椭圆解析版doc等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。
这是一份新高考数学一轮复习核心考点讲与练考点11 复数(2份打包,原卷版+解析版),文件包含新高考一轮复习核心考点讲与练考点11复数原卷版doc、新高考一轮复习核心考点讲与练考点11复数解析版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。