所属成套资源:新高考数学一轮复习 (精讲+精练)(2份打包,原卷版+教师版)
新高考数学一轮复习第6章 第05讲 数列章节总结 (精讲)(2份打包,原卷版+教师版)
展开
这是一份新高考数学一轮复习第6章 第05讲 数列章节总结 (精讲)(2份打包,原卷版+教师版),文件包含新高考数学一轮复习第6章第05讲数列章节总结精讲教师版doc、新高考数学一轮复习第6章第05讲数列章节总结精讲学生版doc等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。
题型一:数列前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 法
题型二:数列前 SKIPIF 1 < 0 项积 SKIPIF 1 < 0 法
题型三:累加法;累乘法
题型四:构造法
题型五:倒数法
题型六:隔项等差(等比)数列
二、数列求和
题型一:倒序相加法
题型二:分组求和法
题型三:裂项相消法
题型四:错位相减法
题型五:奇偶项讨论求和
题型六:插入新数列混合求和
一、数列求通项
题型一:数列前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 法
例题1.设正项数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
求 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 (舍),
∴ SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
所以当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 .
∵ SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 是以7为首项,3为公差的等差数列,
∴ SKIPIF 1 < 0 .
例题2.已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
求数列 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,满足 SKIPIF 1 < 0 ,
故数列 SKIPIF 1 < 0 为公差为3的等差数列,通项公式为 SKIPIF 1 < 0 ,
例题3.已知数列 SKIPIF 1 < 0 的首项 SKIPIF 1 < 0 ,前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且满足 SKIPIF 1 < 0 .
求 SKIPIF 1 < 0 及 SKIPIF 1 < 0 ;
【答案】(1) SKIPIF 1 < 0 ; SKIPIF 1 < 0
由 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 .
因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
又 SKIPIF 1 < 0 ①, SKIPIF 1 < 0 ②,
① SKIPIF 1 < 0 ②得 SKIPIF 1 < 0 即 SKIPIF 1 < 0 .
又 SKIPIF 1 < 0 ,所以数列 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项, SKIPIF 1 < 0 为公比的等比数列.
故 SKIPIF 1 < 0 .
例题4.已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 .
求数列 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
⑴ SKIPIF 1 < 0 ①
SKIPIF 1 < 0 ②
① SKIPIF 1 < 0 ②可得 SKIPIF 1 < 0
SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0
SKIPIF 1 < 0 数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0
例题5.已知数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 , SKIPIF 1 < 0 .
求数列 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 ( SKIPIF 1 < 0 ).(2)证明见解析
由已知得 SKIPIF 1 < 0
由 SKIPIF 1 < 0 ,①
得 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,②
①-②得 SKIPIF 1 < 0
∴ SKIPIF 1 < 0 ,
SKIPIF 1 < 0 也适合此式,
∴ SKIPIF 1 < 0 ( SKIPIF 1 < 0 ).
例题6.各项均为正数的数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 为等比数列,且 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0
∵ SKIPIF 1 < 0 ①,
∴ SKIPIF 1 < 0 ,∵ SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ②,
由①-②得 SKIPIF 1 < 0
∴ SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
∴数列 SKIPIF 1 < 0 是公差为1,首项为1的等差数列.
∴ SKIPIF 1 < 0
∵ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 为等比数列,
∴ SKIPIF 1 < 0
例题7.设数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
求数列 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 ;
因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , ①
所以当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 .
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,②
①-②得, SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 .
因为 SKIPIF 1 < 0 ,适合上式,所以 SKIPIF 1 < 0 .
例题8.已知正项数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,前n项和 SKIPIF 1 < 0 满足 SKIPIF 1 < 0
求数列 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 ;
解:∵ SKIPIF 1 < 0
∴ SKIPIF 1 < 0
∴ SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 是以1为首项,1为公差的等差数数列,
∴ SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 也成立,
∴ SKIPIF 1 < 0 .
例题9.已知数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 ,满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
求证:数列 SKIPIF 1 < 0 是等差数列;
【答案】(1)证明见解析
证明:∵ SKIPIF 1 < 0
∴ SKIPIF 1 < 0
由已知易得 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0
∴数列 SKIPIF 1 < 0 是首项 SKIPIF 1 < 0 ,公差为 SKIPIF 1 < 0 的等差数列;
例题10.已知首项为1的数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0
依题意, SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 是首项为1,公差为1的等差数列,所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
又当n=1时, SKIPIF 1 < 0 也满足上式,所以 SKIPIF 1 < 0 .
题型二:数列前 SKIPIF 1 < 0 项积 SKIPIF 1 < 0 法
例题1.数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项积为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .求 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通项公式;
【答案 SKIPIF 1 < 0 ; SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 是以1为首项,2为公比的等比数列,所以 SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 时也符合,所以 SKIPIF 1 < 0 .
例题2.已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 .
求数列 SKIPIF 1 < 0 的通项公式:
【答案】(1) SKIPIF 1 < 0 ;
由题意,数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,
则:当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 得: SKIPIF 1 < 0 , SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,所以: SKIPIF 1 < 0 .
SKIPIF 1 < 0 由于: SKIPIF 1 < 0 ,
所以: SKIPIF 1 < 0 ,
则: SKIPIF 1 < 0
SKIPIF 1 < 0 .
例题3.设各项为正数的数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项积为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)求证:数列 SKIPIF 1 < 0 是等差数列;
(2)求数列 SKIPIF 1 < 0 的通项公式.
【答案】(1)证明见解析;(2) SKIPIF 1 < 0
(1)当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时,由 SKIPIF 1 < 0 得: SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项,2为公差的等差数列.
(2)由(1)可知 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,经检验, SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,由(1)知 SKIPIF 1 < 0 ,
综上所述, SKIPIF 1 < 0
例题4.已知数列 SKIPIF 1 < 0 的前n项积 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)记 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的最小值.
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1) SKIPIF 1 < 0 .
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,也符合 SKIPIF 1 < 0 .
故 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项,2为公差的等差数列,
SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 的最小值为 SKIPIF 1 < 0 .
例题5.设首项为2的数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项积为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)∵ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
由累乘法得,
SKIPIF 1 < 0
SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 也满足上式,
∴ SKIPIF 1 < 0 .
(2)由(1)知, SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0
例题6.已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项积 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 为等差数列,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 .(2) SKIPIF 1 < 0 .
(1)解:因为数列 SKIPIF 1 < 0 的前n项积 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
两式相除得 SKIPIF 1 < 0 ,
因为数列 SKIPIF 1 < 0 为等差数列,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,所以数列 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(2)解:由(1)得 SKIPIF 1 < 0 ,所以
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
题型三:累加法;累乘法
例题1.(1)已知数列 SKIPIF 1 < 0 是正项数列, SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .求数列 SKIPIF 1 < 0 的通项公式;
(2)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .求数列 SKIPIF 1 < 0 的通项公式.
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
解:(1)由 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
对任意的 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
所以,数列 SKIPIF 1 < 0 是公比为 SKIPIF 1 < 0 的等比数列, SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
(2)由 SKIPIF 1 < 0 ,得: SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,所以,数列 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项, SKIPIF 1 < 0 为公比的等比数列,
得 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
累加得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 也满足 SKIPIF 1 < 0 ,故对任意的 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
例题2.已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且满足 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0
由 SKIPIF 1 < 0 ,得当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
两式相减得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 数列 SKIPIF 1 < 0 是首项为2,公比为2的等比数列,
SKIPIF 1 < 0 .
由 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,…, SKIPIF 1 < 0 ,
累加得 SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 .
例题3.已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 ,且当 SKIPIF 1 < 0 , SKIPIF 1 < 0 时, SKIPIF 1 < 0 .
(1)证明:数列 SKIPIF 1 < 0 是等比数列;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1)证明见解析(2) SKIPIF 1 < 0
(1)证明:由题意,当 SKIPIF 1 < 0 时,∴ SKIPIF 1 < 0 ,
整理,得 SKIPIF 1 < 0 ,
∵ SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,
∴数列 SKIPIF 1 < 0 是以2为首项,2为公比的等比数列;
(2)由(1)知, SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,…, SKIPIF 1 < 0 ,
各项相加,可得 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 也成立,
SKIPIF 1 < 0 -1 , SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0
SKIPIF 1 < 0 ,
综上, SKIPIF 1 < 0 .
例题4.已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通项公式.
【答案】(1) SKIPIF 1 < 0
(1)解:由 SKIPIF 1 < 0 ,
得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,…, SKIPIF 1 < 0 ,
由累加法得 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,
又因为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
例题5.数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .( SKIPIF 1 < 0 , SKIPIF 1 < 0 ).
(1)证明数列 SKIPIF 1 < 0 是等比数列,并求出数列 SKIPIF 1 < 0 的通项公式;
【答案】(1)证明见解析, SKIPIF 1 < 0
(1)解:由 SKIPIF 1 < 0 ,
得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
∴数列 SKIPIF 1 < 0 是首项为2,公比为2的等比数列,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0
= SKIPIF 1 < 0 ,
又当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 符合上式,
∴ SKIPIF 1 < 0 .
例题6.已知数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 且 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0
由已知 SKIPIF 1 < 0 以及 SKIPIF 1 < 0 可知 SKIPIF 1 < 0 ,从而有 SKIPIF 1 < 0 ,
根据累乘法得: SKIPIF 1 < 0 ,整理得: SKIPIF 1 < 0 ,
由于该式对于 SKIPIF 1 < 0 也成立,于是数列 SKIPIF 1 < 0 的通项公式为: SKIPIF 1 < 0 ;
例题7.数列 SKIPIF 1 < 0 与 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)若 SKIPIF 1 < 0 是等比数列, SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 ;
(2)若 SKIPIF 1 < 0 是各项均为正数的等比数列,前三项和为14,求 SKIPIF 1 < 0 的通项公式.
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)设 SKIPIF 1 < 0 的公比为q, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0
∴ SKIPIF 1 < 0 ,∴数列 SKIPIF 1 < 0 是等差数列,且公差 SKIPIF 1 < 0 , SKIPIF 1 < 0
前n项和 SKIPIF 1 < 0 .
(2)设 SKIPIF 1 < 0 的公比为p,则 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0
得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .即 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 .
SKIPIF 1 < 0 符合上式,∴ SKIPIF 1 < 0 .
例题8.已知 SKIPIF 1 < 0 是数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 n项和, SKIPIF 1 < 0 ,且当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 成等差数列.
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)设数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,求正整数 SKIPIF 1 < 0 的值.
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
(1)由题意知当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,整理得 SKIPIF 1 < 0 ,
由 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
经检验, SKIPIF 1 < 0 也符合 SKIPIF 1 < 0 .
∴当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 .
由 SKIPIF 1 < 0 也满足 SKIPIF 1 < 0 ,
∴数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 .
(2)由(1)得 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 .
由 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 .
例题9.已知等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 ; SKIPIF 1 < 0 ;
(1)设等差数列 SKIPIF 1 < 0 的公差为d,由题意可得: SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,所以数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 ;
因为数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以当 SKIPIF 1 < 0 时,
SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 满足,所以数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 .
例题10.数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 ;数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
求数列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0
与条件等式两边相减,得 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0
所以 SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 =1,
SKIPIF 1 < 0 .
故有 SKIPIF 1 < 0
所求通项公式分别为 SKIPIF 1 < 0 和 SKIPIF 1 < 0
题型四:构造法
例题1.设数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
求数列 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0
因为 SKIPIF 1 < 0 ,①
SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0
SKIPIF 1 < 0 时, SKIPIF 1 < 0 ②
①-②得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是 SKIPIF 1 < 0 为首项, SKIPIF 1 < 0 为公比的等比数列,
故 SKIPIF 1 < 0
例题2.已知数列 SKIPIF 1 < 0 的首项 SKIPIF 1 < 0 ,且满足 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),求数列 SKIPIF 1 < 0 的通项公式.
【答案】 SKIPIF 1 < 0
由 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 是首项为 SKIPIF 1 < 0 ,公比为 SKIPIF 1 < 0 的等比数列,
所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
例题3.已知数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的通项公式.
【答案】 SKIPIF 1 < 0
∵ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
∴数列 SKIPIF 1 < 0 是等差数列,公差为 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 .
例题4.设数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 .求数列 SKIPIF 1 < 0 的通项公式.
【答案】 SKIPIF 1 < 0 .
由 SKIPIF 1 < 0 知: SKIPIF 1 < 0 ,而 SKIPIF 1 < 0 ,
∴数列 SKIPIF 1 < 0 是首项、公差为 SKIPIF 1 < 0 的等差数列,即 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 .
例题5.已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 .
求数列 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
解:由 SKIPIF 1 < 0 ,
可得 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 =1,
则数列 SKIPIF 1 < 0 是首项为 SKIPIF 1 < 0 =1,公差为1的等差数列,
则 SKIPIF 1 < 0 = SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ;
例题6.已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 ,满足 SKIPIF 1 < 0 .
证明数列 SKIPIF 1 < 0 为等比数列;
【答案】(1)证明见解析;
由 SKIPIF 1 < 0 可得 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0
所以数列 SKIPIF 1 < 0 是首项为2,公比为2的等比数列
例题7.已知数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 .证明数列 SKIPIF 1 < 0 是等比数列并求数列 SKIPIF 1 < 0 的通项公式;
【答案】证明见解析; SKIPIF 1 < 0 .
解:因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
所以数列 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项,3为公比的等比数列.
因此 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
题型五:倒数法
例题1.已知数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0
证明:数列 SKIPIF 1 < 0 是等比数列
【答案】(1)证明见解析 ;
证明:由 SKIPIF 1 < 0 ,知 SKIPIF 1 < 0
又 SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项,3为公比的等比数列
例题2.设数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
求数列 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 ;
(1)由 SKIPIF 1 < 0 可得: SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 数列 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项, SKIPIF 1 < 0 为公比的等比数列,
SKIPIF 1 < 0 ,整理可得: SKIPIF 1 < 0 .
例题3.已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
求数列 SKIPIF 1 < 0 的通项公式;
【答案】(Ⅰ) SKIPIF 1 < 0 ;
SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项,以 SKIPIF 1 < 0 为公比的等比数列,
SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ;
例题4.在数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0
求数列 SKIPIF 1 < 0 的通项;
【答案】(1) SKIPIF 1 < 0
解:(1)由已知得: SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0 ,所以数列 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项, SKIPIF 1 < 0 为公差的等差数列, SKIPIF 1 < 0 , SKIPIF 1 < 0
例题5.在数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,并且对于任意 SKIPIF 1 < 0 ,都有 SKIPIF 1 < 0 .
证明数列 SKIPIF 1 < 0 为等差数列,并求 SKIPIF 1 < 0 的通项公式;
【答案】(1)答案见解析, SKIPIF 1 < 0 (2) SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 ,即: SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 数列 SKIPIF 1 < 0 是首项为 SKIPIF 1 < 0 ,公差为 SKIPIF 1 < 0 的等差数列.
根据等差数列通项公式可得:
SKIPIF 1 < 0 SKIPIF 1 < 0 ,故: SKIPIF 1 < 0 .
题型六:隔项等差(等比)数列
例题1.设各项均不等于零的数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 .
求 SKIPIF 1 < 0 的值,并求数列 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0
因为 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
又因为 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
两式相减得: SKIPIF 1 < 0 ,又因为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 为偶数时, SKIPIF 1 < 0 的奇数项是以 SKIPIF 1 < 0 为首项,公差为4的等差数列,所以 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 为奇数时, SKIPIF 1 < 0 的偶数项是以 SKIPIF 1 < 0 为首项,公差为4的等差数列,所以 SKIPIF 1 < 0 ,
所以, SKIPIF 1 < 0 .
例题2.已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
计算 SKIPIF 1 < 0 的值,求 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0
解:当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
由题知 SKIPIF 1 < 0 ①, SKIPIF 1 < 0 ②,
由② SKIPIF 1 < 0 ①得 SKIPIF 1 < 0 ,因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
于是:数列 SKIPIF 1 < 0 的奇数项是以 SKIPIF 1 < 0 为首项,以4为公差的等差数列,
即 SKIPIF 1 < 0 ,
偶数项是以 SKIPIF 1 < 0 为首项,以4为公差的等差数列,
即 SKIPIF 1 < 0
所以 SKIPIF 1 < 0 的通项公式 SKIPIF 1 < 0 ;
例题3.已知数列 SKIPIF 1 < 0 各项都不为 SKIPIF 1 < 0 , SKIPIF 1 < 0 且满足 SKIPIF 1 < 0 ,
(1)求 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 ;
SKIPIF 1 < 0 ①
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ②
① SKIPIF 1 < 0 ② SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0 的奇数项和偶数项各自成等差数列且 SKIPIF 1 < 0
SKIPIF 1 < 0 为奇数), SKIPIF 1 < 0 ( SKIPIF 1 < 0 为偶数 SKIPIF 1 < 0
例题4.设数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且满足 SKIPIF 1 < 0 ( SKIPIF 1 < 0 为常数).
(1)若 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 .
(2)是否存在实数 SKIPIF 1 < 0 ,使得数列 SKIPIF 1 < 0 为等差数列?若存在,求出 SKIPIF 1 < 0 的值;若不存在,请说明理由.
【答案】(1) SKIPIF 1 < 0 (2)存在, SKIPIF 1 < 0
解:(1)由 SKIPIF 1 < 0 可得 SKIPIF 1 < 0 ,
两式相减可得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
(2)解:存在 SKIPIF 1 < 0 ,使得数列 SKIPIF 1 < 0 为等差数列.
理由如下.
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 .
假设存在 SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 为等差数列,则 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
从而 SKIPIF 1 < 0 ,故数列 SKIPIF 1 < 0 的奇数项构成等差数列,偶数项也构成等差数列,且公差均为2.
当 SKIPIF 1 < 0 为偶数时, SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 为奇数时, SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 符合题意.
例题5.(2022·山东·肥城市教学研究中心模拟预测)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
求数列 SKIPIF 1 < 0 的通项公式 SKIPIF 1 < 0 ;
【答案】(1) SKIPIF 1 < 0
解:由题意,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,所以, SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 的奇数项和偶数项都是公比为 SKIPIF 1 < 0 的等比数列.
所以当 SKIPIF 1 < 0 为奇数时,设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 为偶数时,设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .
因此, SKIPIF 1 < 0 .
例题6.(2022·浙江省富阳中学高三阶段练习)数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0
依题意,数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
两式相除并化简得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 是公比为 SKIPIF 1 < 0 的等比数列,其中 SKIPIF 1 < 0 的首项为 SKIPIF 1 < 0 , SKIPIF 1 < 0 的首项为 SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
二、数列求和
题型一:倒序相加法
例题1.已知函数 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 均在函数 SKIPIF 1 < 0 的图象上,函数 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)求 SKIPIF 1 < 0 的值;
(3)令 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前2020项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0 (3) SKIPIF 1 < 0
(1)因为点 SKIPIF 1 < 0 均在函数 SKIPIF 1 < 0 的图象上,
所以 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,适合上式,所以 SKIPIF 1 < 0 .
(2)因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
(3)由(1)知 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,①
又因为 SKIPIF 1 < 0 ,②
因为 SKIPIF 1 < 0 ,
所以① SKIPIF 1 < 0 ②,得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
例题2.(2021·全国·高二)已知数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 ,函数 SKIPIF 1 < 0 对任意的 SKIPIF 1 < 0 都有 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 .
(1)分别求数列 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)存在, SKIPIF 1 < 0 .
(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0
SKIPIF 1 < 0 时满足上式,故 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),
∵ SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,
∵ SKIPIF 1 < 0 ①
∴ SKIPIF 1 < 0 ②
∴①+②,得 SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 .
例题3.(2020·河南大学附属中学高二阶段练习)已知函数 SKIPIF 1 < 0 ,设数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)若记 SKIPIF 1 < 0 ,2,3, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
(1)因为 SKIPIF 1 < 0 ,所以由 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 是首项为2,公差为2的等差数列,
所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
(2)由(1)知 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
两式相加,得:
SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
例题4.(2021·全国·高三专题练习)已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,函数 SKIPIF 1 < 0 对任意的 SKIPIF 1 < 0 都有 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 … SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 的通项公式;
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)因为 SKIPIF 1 < 0 即 SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 是等比数列,首项为 SKIPIF 1 < 0 ,公比为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ;
因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 .
故 SKIPIF 1 < 0 … SKIPIF 1 < 0 .
SKIPIF 1 < 0 SKIPIF 1 < 0 … SKIPIF 1 < 0 .
SKIPIF 1 < 0 ①+②,得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0
题型二:分组求和法
例题1.已知数列 SKIPIF 1 < 0 是等差数列, SKIPIF 1 < 0 是等比数列, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)设等比数列 SKIPIF 1 < 0 的公比为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
又 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,设等差数列 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
(2)由(1)得: SKIPIF 1 < 0 ;
SKIPIF 1 < 0 SKIPIF 1 < 0 .
例题2.已知等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 为正项等比数列,满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 是 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的等差中项.
(1)求数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 , SKIPIF 1 < 0 是数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和,求 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
(1)设等差数列 SKIPIF 1 < 0 的公差为d,依题意可知:
SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 ,
设等比数列 SKIPIF 1 < 0 的公比为q,依题意可知: SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 ;
(2)由(1)可知: SKIPIF 1 < 0
所以 SKIPIF 1 < 0
SKIPIF 1 < 0 .
例题3.已知等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通项公式;
(2)记 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
(1)解:设数列 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 ,由题意知 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 .
(2)解: SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
例题4.已知 SKIPIF 1 < 0 是等差数列,其前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列.
(1)求 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 数列 SKIPIF 1 < 0 的前项和为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)设数列 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 ,则
SKIPIF 1 < 0 ,
∵ SKIPIF 1 < 0 成等比数列,∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
得: SKIPIF 1 < 0 或 SKIPIF 1 < 0 (舍去),∴ SKIPIF 1 < 0 .
(2)由于 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0 .
题型三:裂项相消法
例题1.已知公差不为零的等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列.
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,证明: SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2)证明见解析
(1)设公差为 SKIPIF 1 < 0 ,因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等数列,
所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,或 SKIPIF 1 < 0 (舍去),
所以 SKIPIF 1 < 0 ;
(2)证明:由(1) SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
例题2.已知数列 SKIPIF 1 < 0 对任意的 SKIPIF 1 < 0 都满足 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)令 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)解:∵ SKIPIF 1 < 0 ,∴当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
从而有 SKIPIF 1 < 0 ,即当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 满足上式,
故数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 .
(2)解:由题可知, SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
例题3.等比数列 SKIPIF 1 < 0 中,首项 SKIPIF 1 < 0 ,前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且满足 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)设数列 SKIPIF 1 < 0 公比为 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
可得 SKIPIF 1 < 0 ,化简得 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
(2)由(1)得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
所以 SKIPIF 1 < 0
SKIPIF 1 < 0 ..
例题4.已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 .
(1)求证:数列 SKIPIF 1 < 0 是等比数列,并求出数列 SKIPIF 1 < 0 的通项公式;
(2)令 SKIPIF 1 < 0 ,设数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的最小值.
【答案】(1)证明见解析, SKIPIF 1 < 0 (2)3
(1)证明:由: SKIPIF 1 < 0 ①
SKIPIF 1 < 0 时, SKIPIF 1 < 0 得 SKIPIF 1 < 0 .
SKIPIF 1 < 0 时: SKIPIF 1 < 0 ②
① SKIPIF 1 < 0 ② SKIPIF 1 < 0 即 SKIPIF 1 < 0 .
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 数列 SKIPIF 1 < 0 是首项为2公比为2的等比数列.
SKIPIF 1 < 0 .
(2)由(1)得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
若 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 n的最小值为3.
例题5.设等比数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,记数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的取值范围.
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)解:设公比为 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
(2)解:由(1)及 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0
因为 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 单调递增,
所以 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ;
例题6.已知数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 .
(1)证明: SKIPIF 1 < 0 为等比数列,并求 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1)证明见解析; SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)解: SKIPIF 1 < 0 ,
即为 SKIPIF 1 < 0 ·······①,
又 SKIPIF 1 < 0 ,········②,
①-②得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
又当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 ;
从而 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 是首项为1,公比为2的等比数列;
(2)由(1)得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
例题7.已知数列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通项公式: SKIPIF 1 < 0 , SKIPIF 1 < 0
(1)求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
(2)求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
相减得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
(2)因为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
例题8.已知等差数列{ SKIPIF 1 < 0 }的公差为2,前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列.
(1)求数列{ SKIPIF 1 < 0 }的通项公式;
(2)令 SKIPIF 1 < 0 ,设数列{ SKIPIF 1 < 0 }的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)因为等差数列{ SKIPIF 1 < 0 }的公差为2,前n项和为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列,
由题意得 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
(2)由题意可知,
SKIPIF 1 < 0
当n为偶数时,
SKIPIF 1 < 0
所以 SKIPIF 1 < 0 .
例题9.已知等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的通项公式;
(2)若数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时,求证: SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 (2)证明见解析
(1)解:因为 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
设等差数列 SKIPIF 1 < 0 的公差为d,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
由 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
两式相减得 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是以1为首项、2为公比的等比数列,
则 SKIPIF 1 < 0 ;
(2)由(1)知: SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0
SKIPIF 1 < 0 .
题型四:错位相减法
例题1.已知 SKIPIF 1 < 0 是等差数列, SKIPIF 1 < 0 是等比数列,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)设 SKIPIF 1 < 0 公差为d, SKIPIF 1 < 0 公比为q,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 .
又∵ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,两式相减得 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 .
例题2.设数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),且 SKIPIF 1 < 0 .
(1)求证:数列 SKIPIF 1 < 0 是等比数列;
(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0
【答案】(1)证明见解析;(2) SKIPIF 1 < 0 .
(1)∵ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
两式相减得 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 且 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
∴ SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是首项为2,公比为2的等比数列.
(2)由(1)知 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ①
SKIPIF 1 < 0 ②
SKIPIF 1 < 0 得: SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 .
例题3.设数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
(1)因为 SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 .
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
因为 SKIPIF 1 < 0 也满足上式,所以 SKIPIF 1 < 0 是首项为1,公比为2的等比数列,所以 SKIPIF 1 < 0 .
(2)由(1)知 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 …①
SKIPIF 1 < 0 …②
①-②得 SKIPIF 1 < 0 SKIPIF 1 < 0
SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
例题4.若数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)因为数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
所以数列 SKIPIF 1 < 0 为等比数列,设其公比为q( SKIPIF 1 < 0 ).
所以 SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 .
即 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 .
(2)由(1)可知: SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 ①
SKIPIF 1 < 0 得: SKIPIF 1 < 0 ②
①-②得: SKIPIF 1 < 0
SKIPIF 1 < 0
所以 SKIPIF 1 < 0
例题5.已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,并猜想 SKIPIF 1 < 0 的通项公式;
(2)用数学归纳法证明(1)的猜想结果;
(3)设数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ,猜得: SKIPIF 1 < 0 (2)证明见解析(3) SKIPIF 1 < 0
(1)因为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,
所以令 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
令 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
猜得: SKIPIF 1 < 0 .
(2)证明:(i) SKIPIF 1 < 0 时,猜想成立,
(ii)假设 SKIPIF 1 < 0 时猜想成立,即 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 时,由 SKIPIF 1 < 0 ,
解得 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 时猜想成立,
综上, SKIPIF 1 < 0 时,猜想成立,即 SKIPIF 1 < 0 .
(3)由已知得 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 记为①式
SKIPIF 1 < 0 记为②式
①式与②式相减得:
SKIPIF 1 < 0 ,
整理得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
例题6.已知各项均为正数的等比数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)设等比数列 SKIPIF 1 < 0 的公比为 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,无解.
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 或 SKIPIF 1 < 0 , SKIPIF 1 < 0 (舍).
所以 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 .所以 SKIPIF 1 < 0 ①,则 SKIPIF 1 < 0 ②,
①-②得, SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 .
题型五:奇偶项讨论求和
例题1.设各项非零的数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和记为 SKIPIF 1 < 0 ,记 SKIPIF 1 < 0 ,且满足 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的值,证明数列 SKIPIF 1 < 0 为等差数列并求 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;证明见解析; SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)由题意可知, SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 或 SKIPIF 1 < 0 (舍去)
又当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,所以有 SKIPIF 1 < 0
化简得: SKIPIF 1 < 0 ,所以数列 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项,以 SKIPIF 1 < 0 为公差的等差数列
所以 SKIPIF 1 < 0
(2)由(1)可知 SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0
则 SKIPIF 1 < 0 , SKIPIF 1 < 0
①当 SKIPIF 1 < 0 是奇数时,
SKIPIF 1 < 0
②当 SKIPIF 1 < 0 是偶数时,
SKIPIF 1 < 0
综上所述: SKIPIF 1 < 0
例题2.已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)证明:数列 SKIPIF 1 < 0 为等比数列.
(2)求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1)证明见解析(2) SKIPIF 1 < 0
(1)证明:因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是首项为4,公比为4的等比数列;
(2)解:由(1)可得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0
SKIPIF 1 < 0 .
当n为偶数时, SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0 ,
当n为奇数时,则 SKIPIF 1 < 0
SKIPIF 1 < 0 ,
综上所述, SKIPIF 1 < 0 .
例题3.设数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,满足 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)设数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的表达式
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
(1)当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,因此 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
即 SKIPIF 1 < 0 ,经检验, SKIPIF 1 < 0 时成立,所以 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,
所以,当n为偶数时
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 ;
当n为奇数时, SKIPIF 1 < 0 .
综上所述, SKIPIF 1 < 0 .
例题4.已知等差数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通项公式;
(2)若数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 为偶数, SKIPIF 1 < 0 SKIPIF 1 < 0 ; SKIPIF 1 < 0 为奇数, SKIPIF 1 < 0 SKIPIF 1 < 0 ;
(1)设等差数列 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,得
SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 .
(2)由于 SKIPIF 1 < 0 ,
①若 SKIPIF 1 < 0 为偶数,结合 SKIPIF 1 < 0 ,得
SKIPIF 1 < 0
SKIPIF 1 < 0 ;
②若 SKIPIF 1 < 0 为奇数,则 SKIPIF 1 < 0 SKIPIF 1 < 0 .
综上,当 SKIPIF 1 < 0 为偶数时, SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 为奇数时, SKIPIF 1 < 0 .
例题5.记数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)记 SKIPIF 1 < 0 数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0
(1)当 SKIPIF 1 < 0 时,由 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,即有 SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
即为 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,显然, SKIPIF 1 < 0 .
所以数列 SKIPIF 1 < 0 是首项为3,公比为2的等比数列,
则 SKIPIF 1 < 0 ,即有 SKIPIF 1 < 0
(2) SKIPIF 1 < 0
当 SKIPIF 1 < 0 为偶数时 SKIPIF 1 < 0
当 SKIPIF 1 < 0 为奇数时, SKIPIF 1 < 0
综上可得, SKIPIF 1 < 0
题型六:插入新数列混合求和
例题1.数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,且数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 ,并求数列 SKIPIF 1 < 0 的通项公式;
(2)抽去数列 SKIPIF 1 < 0 中点第1项,第4项,第7项,…,第 SKIPIF 1 < 0 项,余下的项顺序不变,组成一个新数列 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,求证: SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 (2)证明见解析
(1)由题意得 SKIPIF 1 < 0 ,①
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,②
① SKIPIF 1 < 0 ②得, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,也适合上式,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
两式相减得 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是以2为首项,2为公比的等比数列,所以 SKIPIF 1 < 0 .
(2)数列 SKIPIF 1 < 0 为: SKIPIF 1 < 0 ,所以奇数项是以4为首项,8为公比的等比数列,偶数项是以8为首项,8为公比的等比数列.
所以当 SKIPIF 1 < 0 时, SKIPIF 1 < 0
SKIPIF 1 < 0
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,显然 SKIPIF 1 < 0 是关于k的减函数,所以 SKIPIF 1 < 0 ;
所以当 SKIPIF 1 < 0 时, SKIPIF 1 < 0
SKIPIF 1 < 0
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,显然 SKIPIF 1 < 0 是关于k的减函数,所以 SKIPIF 1 < 0 ;
综上所述, SKIPIF 1 < 0 .
例题2.已知公差为正数的等差数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 与 SKIPIF 1 < 0 的等差中项为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通项公式;
(2)从 SKIPIF 1 < 0 中依次取出第 SKIPIF 1 < 0 项、第 SKIPIF 1 < 0 项、第 SKIPIF 1 < 0 项、…、第 SKIPIF 1 < 0 项,按照原来的顺序组成一个新数列 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)设等差数列 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 与 SKIPIF 1 < 0 的等差中项为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 ;
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ;
(2)由(1)得: SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
例题3.设数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)证明: SKIPIF 1 < 0 为等差数列;
(2)设 SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 之间插入 SKIPIF 1 < 0 个数,使这 SKIPIF 1 < 0 个数构成公差为 SKIPIF 1 < 0 的等差数列,求 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和.
【答案】(1)证明见解析
(2) SKIPIF 1 < 0
(1)证明:因为 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,·
因为 SKIPIF 1 < 0 ,·
则 SKIPIF 1 < 0 ①,
所以 SKIPIF 1 < 0 ②,
则① SKIPIF 1 < 0 ②得 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,·
所以 SKIPIF 1 < 0 为等差数列.
(2)解:由(1)可得 SKIPIF 1 < 0 的首项为 SKIPIF 1 < 0 ,公差为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
记 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ①,
所以 SKIPIF 1 < 0 ②,
则① SKIPIF 1 < 0 ②得 SKIPIF 1 < 0 ,·
所以 SKIPIF 1 < 0 ,·
所以 SKIPIF 1 < 0 .·
例题4.已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0
(1)求 SKIPIF 1 < 0 的通项公式:
(2)保持数列 SKIPIF 1 < 0 中各项先后顺序不变,在 SKIPIF 1 < 0 与 SKIPIF 1 < 0 之间插入 SKIPIF 1 < 0 个1,使它们和原数列的项构成一个新的数列 SKIPIF 1 < 0 ,记 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值.
【答案】(1) SKIPIF 1 < 0 (2)142
(1)解:∵ SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,
当n=1时, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0
则 SKIPIF 1 < 0
= SKIPIF 1 < 0 ,
经验证当n=1时, SKIPIF 1 < 0 满足 SKIPIF 1 < 0 .
故 SKIPIF 1 < 0 ;
(2)因为 SKIPIF 1 < 0 与 SKIPIF 1 < 0 之间插入 SKIPIF 1 < 0 个1,
所以 SKIPIF 1 < 0 在 SKIPIF 1 < 0 中对应的项数为
SKIPIF 1 < 0 ,
当k=6时, SKIPIF 1 < 0 ,当k=7时, SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
因此 SKIPIF 1 < 0
SKIPIF 1 < 0 .
例题5.已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且满足 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通项公式;
(2)在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中插入 SKIPIF 1 < 0 个相同的数 SKIPIF 1 < 0 ,构成一个新数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(1)解:因为 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 也满足 SKIPIF 1 < 0 ,所以,对任意的 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(2)解;在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中插入 SKIPIF 1 < 0 个相同的数 SKIPIF 1 < 0 ,
构成一个新数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
其项数为 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,即当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
因此, SKIPIF 1 < 0 .
相关试卷
这是一份新高考数学一轮复习第8章 第03讲 圆的方程 (精讲)(2份打包,原卷版+教师版),文件包含新高考数学一轮复习第8章第03讲圆的方程精讲教师版doc、新高考数学一轮复习第8章第03讲圆的方程精讲学生版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份新高考数学一轮复习第7章 第09讲 立体几何与空间向量 章节总结 (讲)(2份打包,原卷版+教师版),文件包含新高考数学一轮复习第7章第09讲立体几何与空间向量章节总结讲教师版doc、新高考数学一轮复习第7章第09讲立体几何与空间向量章节总结讲学生版doc等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
这是一份新高考数学一轮复习第6章 第04讲 数列求和 (精讲)(2份打包,原卷版+教师版),文件包含新高考数学一轮复习第6章第04讲数列求和精讲教师版doc、新高考数学一轮复习第6章第04讲数列求和精讲学生版doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。