年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    新高考数学二轮复习精讲精练专题04 数列的通项、求和及综合应用(2份打包,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      新高考数学二轮复习精讲精练专题04 数列的通项、求和及综合应用(原卷版).doc
    • 练习
      新高考数学二轮复习精讲精练专题04 数列的通项、求和及综合应用(解析版).doc
    新高考数学二轮复习精讲精练专题04 数列的通项、求和及综合应用(原卷版)第1页
    新高考数学二轮复习精讲精练专题04 数列的通项、求和及综合应用(原卷版)第2页
    新高考数学二轮复习精讲精练专题04 数列的通项、求和及综合应用(原卷版)第3页
    新高考数学二轮复习精讲精练专题04 数列的通项、求和及综合应用(解析版)第1页
    新高考数学二轮复习精讲精练专题04 数列的通项、求和及综合应用(解析版)第2页
    新高考数学二轮复习精讲精练专题04 数列的通项、求和及综合应用(解析版)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学二轮复习精讲精练专题04 数列的通项、求和及综合应用(2份打包,原卷版+解析版)

    展开

    这是一份新高考数学二轮复习精讲精练专题04 数列的通项、求和及综合应用(2份打包,原卷版+解析版),文件包含新高考数学二轮复习精讲精练专题04数列的通项求和及综合应用原卷版doc、新高考数学二轮复习精讲精练专题04数列的通项求和及综合应用解析版doc等2份试卷配套教学资源,其中试卷共86页, 欢迎下载使用。
    数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显(特别是与函数、导数的结合问题),浙江卷小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等偏难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.数列与数学归纳法的结合问题,也应适度关注.
    【核心考点目录】
    核心考点一:等差、等比数列的基本量问题
    核心考点二:证明等差等比数列
    核心考点三:等差等比数列的交汇问题
    核心考点四:数列的通项公式
    核心考点五:数列求和
    核心考点六:数列性质的综合问题
    核心考点六:实际应用中的数列问题
    核心考点七:以数列为载体的情境题
    【真题回归】
    1.(2022·浙江·高考真题)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,则( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    2.(2022·全国·高考真题(文))记 SKIPIF 1 < 0 为等差数列 SKIPIF 1 < 0 的前n项和.若 SKIPIF 1 < 0 ,则公差 SKIPIF 1 < 0 _______.
    3.(2022·全国·高考真题)已知 SKIPIF 1 < 0 为等差数列, SKIPIF 1 < 0 是公比为2的等比数列,且 SKIPIF 1 < 0 .
    (1)证明: SKIPIF 1 < 0 ;
    (2)求集合 SKIPIF 1 < 0 中元素个数.
    4.(2022·全国·高考真题(理))记 SKIPIF 1 < 0 为数列 SKIPIF 1 < 0 的前n项和.已知 SKIPIF 1 < 0 .
    (1)证明: SKIPIF 1 < 0 是等差数列;
    (2)若 SKIPIF 1 < 0 成等比数列,求 SKIPIF 1 < 0 的最小值.
    5.(2022·天津·高考真题)设 SKIPIF 1 < 0 是等差数列, SKIPIF 1 < 0 是等比数列,且 SKIPIF 1 < 0 .
    (1)求 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的通项公式;
    (2)设 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,求证: SKIPIF 1 < 0 ;
    (3)求 SKIPIF 1 < 0 .
    6.(2022·浙江·高考真题)已知等差数列 SKIPIF 1 < 0 的首项 SKIPIF 1 < 0 ,公差 SKIPIF 1 < 0 .记 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 .
    (1)若 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 ;
    (2)若对于每个 SKIPIF 1 < 0 ,存在实数 SKIPIF 1 < 0 ,使 SKIPIF 1 < 0 成等比数列,求d的取值范围.
    【方法技巧与总结】
    1、利用定义判断数列的类型:注意定义要求的任意性,例如若数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 (常数)( SKIPIF 1 < 0 , SKIPIF 1 < 0 )不能判断数列 SKIPIF 1 < 0 为等差数列,需要补充证明 SKIPIF 1 < 0 ;
    2、数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 是等差数列;
    3、数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 为非零常数,且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 为等比数列;
    4、在处理含 SKIPIF 1 < 0 , SKIPIF 1 < 0 的式子时,一般情况下利用公式 SKIPIF 1 < 0 SKIPIF 1 < 0 ,消去 SKIPIF 1 < 0 ,进而求出 SKIPIF 1 < 0 的通项公式;但是有些题目虽然要求 SKIPIF 1 < 0 的通项公式,但是并不便于运用 SKIPIF 1 < 0 ,这时可以考虑先消去 SKIPIF 1 < 0 ,得到关于 SKIPIF 1 < 0 的递推公式,求出 SKIPIF 1 < 0 后再求解 SKIPIF 1 < 0 .
    5、遇到形如 SKIPIF 1 < 0 的递推关系式,可利用累加法求 SKIPIF 1 < 0 的通项公式,遇到形如 SKIPIF 1 < 0 的递推关系式,可利用累乘法求 SKIPIF 1 < 0 的通项公式,注意在使用上述方法求通项公式时,要对第一项是否满足进行检验.
    6、遇到下列递推关系式,我们通过构造新数列,将它们转化为熟悉的等差数列、等比数列,从而求解该数列的通项公式:
    (1)形如 SKIPIF 1 < 0 ( SKIPIF 1 < 0 , SKIPIF 1 < 0 ),可变形为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项,以 SKIPIF 1 < 0 为公比的等比数列,由此可以求出 SKIPIF 1 < 0 ;
    (2)形如 SKIPIF 1 < 0 ( SKIPIF 1 < 0 , SKIPIF 1 < 0 ),此类问题可两边同时除以 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 ,从而变成 SKIPIF 1 < 0 SKIPIF 1 < 0 ,从而将问题转化为第(1)个问题;
    (3)形如 SKIPIF 1 < 0 ,可以考虑两边同时除以 SKIPIF 1 < 0 ,转化为 SKIPIF 1 < 0 的形式,设 SKIPIF 1 < 0 ,则有 SKIPIF 1 < 0 ,从而将问题转化为第(1)个问题.
    7、公式法是数列求和的最基本的方法,也是数列求和的基础.其他一些数列的求和可以转化为等差或等比数列的求和.利用等比数列求和公式,当公比是用字母表示时,应对其是否为 SKIPIF 1 < 0 进行讨论.
    8、用裂项相消法求和时,要对通项进行变换,如: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,裂项后产生可以连续相互抵消的项.抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,但是前后所剩项数一定相同.
    常见的裂项公式:
    (1) SKIPIF 1 < 0 ;
    (2) SKIPIF 1 < 0 ;
    (3) SKIPIF 1 < 0 ;
    (4) SKIPIF 1 < 0 ;
    (5) SKIPIF 1 < 0 .
    9、用错位相减法求和时的注意点:
    (1)要善于通过通项公式特征识别题目类型,特别是等比数列公比为负数的情形;
    (2)在写出“ SKIPIF 1 < 0 ”与“ SKIPIF 1 < 0 ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“ SKIPIF 1 < 0 ”的表达式;
    (3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.
    10、分组转化法求和的常见类型:
    (1)若 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 为等差或等比数列,可采用分组求和法求 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和;
    (2)通项公式为 SKIPIF 1 < 0 ,其中数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 是等比数列或等差数列,可采用分组求和法求和;
    (3)要善于识别一些变形和推广的分组求和问题.
    11、在等差数列 SKIPIF 1 < 0 中,若 SKIPIF 1 < 0 ( SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ),则 SKIPIF 1 < 0 .
    在等比数列 SKIPIF 1 < 0 中,若 SKIPIF 1 < 0 ( SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ),则 SKIPIF 1 < 0 .
    12、前 SKIPIF 1 < 0 项和与积的性质
    (1)设等差数列 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 ,前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 .
    = 1 \* GB3 ① SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,…也成等差数列,公差为 SKIPIF 1 < 0 .
    = 2 \* GB3 ② SKIPIF 1 < 0 也是等差数列,且 SKIPIF 1 < 0 ,公差为 SKIPIF 1 < 0 .
    = 3 \* GB3 ③若项数为偶数 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    若项数为奇数 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (2)设等比数列 SKIPIF 1 < 0 的公比为 SKIPIF 1 < 0 ,前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0
    = 1 \* GB3 ①当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,…也成等比数列,公比为 SKIPIF 1 < 0
    = 2 \* GB3 ②相邻 SKIPIF 1 < 0 项积 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,…也成等比数列,公比为 SKIPIF 1 < 0 SKIPIF 1 < 0 .
    = 3 \* GB3 ③若项数为偶数 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;项数为奇数时,没有较好性质.
    13、衍生数列
    (1)设数列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 均是等差数列,且等差数列 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 为常数.
    = 1 \* GB3 ① SKIPIF 1 < 0 的等距子数列 SKIPIF 1 < 0 SKIPIF 1 < 0 也是等差数列,公差为 SKIPIF 1 < 0 .
    = 2 \* GB3 ②数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 也是等差数列,而 SKIPIF 1 < 0 是等比数列.
    (2)设数列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 均是等比数列,且等比数列 SKIPIF 1 < 0 的公比为 SKIPIF 1 < 0 , SKIPIF 1 < 0 为常数.
    = 1 \* GB3 ① SKIPIF 1 < 0 的等距子数列 SKIPIF 1 < 0 也是等比数列,公比为 SKIPIF 1 < 0 .
    = 2 \* GB3 ②数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0
    也是等比数列,而 SKIPIF 1 < 0 SKIPIF 1 < 0 是等差数列.
    14、判断数列单调性的方法
    (1)比较法(作差或作商);(2)函数化(要注意扩展定义域).
    15、求数列最值的方法(以最大值项为例,最小值项同理)
    方法 SKIPIF 1 < 0 :利用数列的单调性;
    方法2:设最大值项为 SKIPIF 1 < 0 ,解方程组 SKIPIF 1 < 0 ,再与首项比较大小.
    【核心考点】
    核心考点一:等差、等比数列的基本量问题
    【规律方法】
    利用等差数列中的基本量(首项,公差,项数),等比数列的基本量(首项,公比,项数)翻译条件,将问题转换成含基本量的方程或不等式问题求解.
    【典型例题】
    例1.(2022·全国·模拟预测)已知等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
    A.4B.3C.2D.1
    例2.(2022·江西·临川一中高三阶段练习(文))已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 =( )
    A.80B.100C.120D.143
    例3.(2022·新疆·高三期中(理))已知一个项数为偶数的等比数列 SKIPIF 1 < 0 ,所有项之和为所有奇数项之和的3倍,前4项之积为64,则 SKIPIF 1 < 0 ( )
    A.1B. SKIPIF 1 < 0 C.2D.1或 SKIPIF 1 < 0
    例4.(2022·全国·高三阶段练习(文))已知公差不为零的等差数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列,则数列 SKIPIF 1 < 0 的前9项的和为( )
    A.1B.2C.81D.80
    例5.(2022·重庆八中高三阶段练习)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    例6.(2022·湖北·高三阶段练习)在公差不为零的等差数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列,设数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    例7.(2022·江苏无锡·高三期中)已知两个等差数列2,6,10,…,198及2,8,14,…,200,将这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和为( )
    A.1460B.1472
    C.1666D.1678
    核心考点二:证明等差等比数列
    【规律方法】
    判断或证明数列是等差、等比数列常见的方法如下.
    (1)定义法:对于 SKIPIF 1 < 0 的任意正整数:
    ①若 SKIPIF 1 < 0 为一常数,则 SKIPIF 1 < 0 为等差数列;
    ②若 SKIPIF 1 < 0 为常数,则 SKIPIF 1 < 0 为等比数列.
    (2)通项公式法:
    ①若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 为等差数列;
    (2)若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 为等比数列.
    (3)中项公式法:
    ①若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 为等差数列;
    ②若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 为等比数列.
    (4)前 SKIPIF 1 < 0 项和法:若 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 满足:
    ① SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 为等差数列.
    ② SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 为等比数列.
    【典型例题】
    例8.(2022·吉林长春·模拟预测)已知数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)证明:数列 SKIPIF 1 < 0 是等差数列;
    (2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
    例9.(2022·河南·高三期中(理))已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)证明:数列 SKIPIF 1 < 0 为等差数列;
    (2)求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
    例10.(2022·全国·高三专题练习)在数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)求 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
    (2)证明:数列 SKIPIF 1 < 0 为等差数列,并求数列 SKIPIF 1 < 0 的通项公式;
    例11.(2022·四川·宜宾市叙州区第二中学校模拟预测(理))现有甲、乙、丙三个人相互传接球,第一次从甲开始传球,甲随机地把球传给乙、丙中的一人,接球后视为完成第一次传接球;接球者进行第二次传球,随机地传给另外两人中的一人,接球后视为完成第二次传接球;依次类推,假设传接球无失误.
    (1)设乙接到球的次数为 SKIPIF 1 < 0 ,通过三次传球,求 SKIPIF 1 < 0 的分布列与期望;
    (2)设第 SKIPIF 1 < 0 次传球后,甲接到球的概率为 SKIPIF 1 < 0 ,
    (i)试证明数列 SKIPIF 1 < 0 为等比数列;
    (ii)解释随着传球次数的增多,甲接到球的概率趋近于一个常数.
    例12.(2022·湖南·宁乡一中高三期中)已知数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)求 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
    (2)设 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,证明数列 SKIPIF 1 < 0 是等比数列,并求其通项公式;
    (3)求数列 SKIPIF 1 < 0 前10项中所有奇数项的和.
    例13.(2022·河南·高三期中(理))已知数列 SKIPIF 1 < 0 的各项均不为0,其前 SKIPIF 1 < 0 项的乘积 SKIPIF 1 < 0 .
    (1)若 SKIPIF 1 < 0 为常数列,求这个常数;
    (2)若 SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的通项公式.
    例14.(2022·全国·高三专题练习)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .求数列 SKIPIF 1 < 0 的通项公式;
    例15.(2022·全国·高三专题练习)问题:已知 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,是否存在数列 SKIPIF 1 < 0 ,满足 SKIPIF 1 < 0 ,__________﹖若存在.求通项公式 SKIPIF 1 < 0 ﹔若不存在,说明理由.
    在① SKIPIF 1 < 0 ﹔② SKIPIF 1 < 0 ;③ SKIPIF 1 < 0 这三个条件中任选一个,补充在上面问题中并作答.
    注:如果选择多个条件分别解答,按第一个解答计分.
    核心考点三:等差等比数列的交汇问题
    【规律方法】
    在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.
    【典型例题】
    例16.(2022·河南·一模(理))已知等比数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 之间插入 SKIPIF 1 < 0 个数,使这 SKIPIF 1 < 0 个数组成一个公差为 SKIPIF 1 < 0 的等差数列,在数列 SKIPIF 1 < 0 中是否存在 SKIPIF 1 < 0 项 SKIPIF 1 < 0 (其中 SKIPIF 1 < 0 是公差不为 SKIPIF 1 < 0 的等差数列)成等比数列?若存在,求出这 SKIPIF 1 < 0 项;若不存在,请说明理由.
    例17.(2022·全国·高三专题练习)已知数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)判断数列 SKIPIF 1 < 0 中是否存在成等差数列的三项,并证明你的结论.
    例18.(2022·福建省福州华侨中学高三阶段练习)已知在正项等比数列 SKIPIF 1 < 0 中 SKIPIF 1 < 0 成等差数列,则 SKIPIF 1 < 0 __________.
    例19.(2022·湖北·高三期中)已知 SKIPIF 1 < 0 是等差数列, SKIPIF 1 < 0 是等比数列, SKIPIF 1 < 0 是数列 SKIPIF 1 < 0 的前n项和, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 =______.
    例20.(2022·河南省淮阳中学模拟预测(理))已知等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项利为 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,1成等比数列,且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的公差 SKIPIF 1 < 0 的取值范围为______.
    例21.(2022·上海·华东师范大学第一附属中学高三阶段练习)已知等差数列 SKIPIF 1 < 0 的公差 SKIPIF 1 < 0 不为零,等比数列 SKIPIF 1 < 0 的公比 SKIPIF 1 < 0 是小于1的正有理数.若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 是正整数,则 SKIPIF 1 < 0 的值可以是______.
    例22.(2022·贵州·顶效开发区顶兴学校高三期中(理))对于集合A, SKIPIF 1 < 0 ,定义集合 SKIPIF 1 < 0 . 己知等差数列 SKIPIF 1 < 0 和正项等比数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .设数列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中的所有项分别构成集合A, SKIPIF 1 < 0 ,将集合 SKIPIF 1 < 0 的所有元素按从小到大依次排列构成一个新数列 SKIPIF 1 < 0 ,则数列 SKIPIF 1 < 0 的前30项和 SKIPIF 1 < 0 _________.
    例23.(2022·全国·模拟预测(文))设数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则它们的公共项由小到大排列后组成新数列 SKIPIF 1 < 0 .在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中插入 SKIPIF 1 < 0 个数构成一个新数列 SKIPIF 1 < 0 : SKIPIF 1 < 0 ,1, SKIPIF 1 < 0 ,3,5, SKIPIF 1 < 0 ,7,9,11, SKIPIF 1 < 0 ,…,插入的所有数构成首项为1,公差为2的等差数列,则数列 SKIPIF 1 < 0 的前20项和 SKIPIF 1 < 0 ______.
    核心考点四:数列的通项公式
    【规律方法】
    常见求解数列通项公式的方法有如下六种:
    (1)观察法:根据所给的一列数、式、图形等,通过观察法猜想其通项公式.
    (2)累加法:形如 SKIPIF 1 < 0 的解析式.
    (3)累乘法:形如 SKIPIF 1 < 0
    (4)公式法
    (5)取倒数法:形如 SKIPIF 1 < 0 的关系式
    (6)构造辅助数列法:通过变换递推关系,将非等差(比)数列构造为等差(比)数列来求通项公式.
    【典型例题】
    例24.(2022·上海市南洋模范中学高三期中)在数列 SKIPIF 1 < 0 中. SKIPIF 1 < 0 , SKIPIF 1 < 0 是其前n项和,当 SKIPIF 1 < 0 时,恒有 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 成等比数列,则 SKIPIF 1 < 0 ___________
    例25.(2022·黑龙江·肇州县第二中学高三阶段练习)已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则数列 SKIPIF 1 < 0 _____________.
    例26.(2022·福建·高三阶段练习)设等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ______.
    例27.(2022·全国·高三专题练习)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,则数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 ______.
    例28.(2022·全国·高三专题练习)已知在数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 __________.
    例29.(2022·全国·高三专题练习)已知在数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ______.
    例30.(2022·全国·高三专题练习)设 SKIPIF 1 < 0 是首项为1的正项数列且 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的通项公式_________
    例31.(2022·全国·高三专题练习)已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),则 SKIPIF 1 < 0 ___________
    例32.(2022·全国·高三专题练习)数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的通项公式为_____________.
    例33.(2022·全国·高三专题练习)甲、乙两人各拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数,原掷骰子的人再继续掷;若掷出的点数之和不是3的倍数,就由对方接着掷.第一次由甲开始掷,则第n次由甲掷的概率 SKIPIF 1 < 0 ______(用含n的式子表示).
    核心考点五:数列求和
    【规律方法】
    求数列前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 的常见方法有以下四种.
    (1)公式法:利用等差、等比数列的前 SKIPIF 1 < 0 项和公式求数列的前 SKIPIF 1 < 0 项和.
    (2)裂项相消法:将数列恒等变形为连续两项或相隔若干项之差的形式,进行消项.其方法核心有两点:一是裂项,将一个式子分裂成两个式子差的形式;二是要能相消.常见的裂项相消变换有以下形式.
    ①分式裂项: SKIPIF 1 < 0 ; SKIPIF 1 < 0
    ②根式裂项: SKIPIF 1 < 0 ;
    ③对数式裂项 SKIPIF 1 < 0 ;
    ④指数式裂项
    (3)错位相减法
    (4)分组转化法
    【典型例题】
    例34.(2022·全国·高三专题练习)已知函数 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 均在函数 SKIPIF 1 < 0 的图象上,函数 SKIPIF 1 < 0 .
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)求 SKIPIF 1 < 0 的值;
    (3)令 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前2020项和 SKIPIF 1 < 0 .
    例35.(2022·陕西渭南·一模(理))已知各项均为正数的数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 .各项均为正数的等比数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)求数列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通项公式;
    (2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
    例36.(2022·陕西渭南·一模(文))已知等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,不等式 SKIPIF 1 < 0 的解集为 SKIPIF 1 < 0 .
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
    例37.(2022·全国·模拟预测)在数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)令 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
    例38.(2022·黑龙江·哈尔滨市第六中学校高三期中)已知数列 SKIPIF 1 < 0 的各项均为正数的等比数列, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
    例39.(2022·四川省蓬溪县蓬南中学高三阶段练习)给定数列 SKIPIF 1 < 0 ,若满足 SKIPIF 1 < 0 ,对于任意的 SKIPIF 1 < 0 ,都有 SKIPIF 1 < 0 ,则称 SKIPIF 1 < 0 为“指数型数列”.若数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 ;
    (1)判断 SKIPIF 1 < 0 是否为“指数型数列”,若是给出证明,若不是说明理由;
    (2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
    例40.(2022·广西·南宁市第十九中学模拟预测(文))数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 ( SKIPIF 1 < 0 为正常数),且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
    例41.(2022·全国·高三专题练习) SKIPIF 1 < 0 为等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和,且 SKIPIF 1 < 0 ,记 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 表示不超过 SKIPIF 1 < 0 的最大整数,如 SKIPIF 1 < 0 .
    (1)求 SKIPIF 1 < 0 ;
    (2)求数列 SKIPIF 1 < 0 的前2022项和.
    例42.(2022·云南·昆明一中高三阶段练习)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 .
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
    核心考点六:数列性质的综合问题
    【典型例题】
    例43.(2022·全国·模拟预测)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的最小值是( )
    A.-15B.-14C.-11D.-6
    例44.(2022·福建三明·高三期中)设等比数列 SKIPIF 1 < 0 的公比为 SKIPIF 1 < 0 ,其前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,前 SKIPIF 1 < 0 项积为 SKIPIF 1 < 0 ,并满足条件 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则下列结论正确的是( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 是数列 SKIPIF 1 < 0 中的最大值
    C. SKIPIF 1 < 0 D.数列 SKIPIF 1 < 0 无最大值
    例45.(2022·广西·南宁市第十九中学模拟预测(文))数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 ,则数列 SKIPIF 1 < 0 中的最大项为( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    例46.(2022·全国·安阳市第二中学模拟预测(文))已知数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 恒成立,则实数 SKIPIF 1 < 0 的最大值为( )
    A. SKIPIF 1 < 0 B.1C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    例47.(2022·山西运城·高三期中)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且对于任意的 SKIPIF 1 < 0 都有 SKIPIF 1 < 0 ,则实数 SKIPIF 1 < 0 的取值范围是( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    例48.(2022·山东聊城·高三期中)若函数 SKIPIF 1 < 0 使得数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 为递增数列,则称函数 SKIPIF 1 < 0 为“数列保增函数”.已知函数 SKIPIF 1 < 0 为“数列保增函数”,则a的取值范围为( ).
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
    C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    例49.(2022·广东·执信中学高三阶段练习)已知等比数列 SKIPIF 1 < 0 的前5项积为32, SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的取值范围为( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    例50.(2022·北京八中高三阶段练习)已知数列 SKIPIF 1 < 0 是递增数列,且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的取值范围是( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    例51.(2022·江西·高三阶段练习(理))已知数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,若对于任意 SKIPIF 1 < 0 ,不等式 SKIPIF 1 < 0 恒成立,则实数 SKIPIF 1 < 0 的取值范围为( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    核心考点六:实际应用中的数列问题
    【规律方法】
    解数列应用题的一般步骤
    (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.
    (2)根据题意数列问题模型.
    (3)应用数列知识求解.
    (4)将数列问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.
    【典型例题】
    例52.(2022·黑龙江·哈尔滨市剑桥第三高级中学有限公司高三阶段练习)某单位用分期付款方式为职工购买40套住房,总房价1150万元.约定:2021年7月1日先付款150万元,以后每月1日都交付50万元,并加付此前欠款利息,月利率 SKIPIF 1 < 0 ,当付清全部房款时,各次付款的总和为( )
    A.1205万元B.1255万元C.1305万元D.1360万元
    例53.(2022·全国·高三专题练习)在“全面脱贫”行动中,贫困户小王2020年1月初向银行借了扶贫免息贷款10000元,用于自己开设的土特产品加工厂的原材料进货,因产品质优价廉,上市后供不应求,据测算每月获得的利润是该月月初投入资金的20%,每月月底需缴纳房租600元和水电费400元.余款作为资金全部用于再进货,如此继续.设第n月月底小王手中有现款为 SKIPIF 1 < 0 ,则下列结论正确的是( )(参考数据: SKIPIF 1 < 0 , SKIPIF 1 < 0 )
    ① SKIPIF 1 < 0
    ② SKIPIF 1 < 0
    ③2020年小王的年利润约为40000元
    ④两年后,小王手中现款约达41万
    A.②③④B.②④C.①②④D.②③
    例54.(2022·全国·高三专题练习)为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取 SKIPIF 1 < 0 , SKIPIF 1 < 0 )
    A.32500元B.40000元C.42500元D.50000元
    例55.(2022·云南昭通·高三阶段练习(文))某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高28万元,第七实验室比第四实验室的改建费用高112万元,并要求每个实验室改建费用不能超过1100万元.则该研究所改建这十个实验室投入的总费用最多需要( )
    A.2806万元B.2906万元C.3106万元D.3206万元
    例56.(2022·全国·高三专题练习)在流行病学中,基本传染数 SKIPIF 1 < 0 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数. SKIPIF 1 < 0 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于 SKIPIF 1 < 0 ,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数 SKIPIF 1 < 0 ,平均感染周期为7天(初始感染者传染 SKIPIF 1 < 0 个人为第一轮传染,经过一个周期后这 SKIPIF 1 < 0 个人每人再传染 SKIPIF 1 < 0 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据: SKIPIF 1 < 0 , SKIPIF 1 < 0 )( )
    A.35B.42C.49D.56
    核心考点七:以数列为载体的情境题
    【规律方法】
    1、应用数列知识解决此类问题,关键是列出相关信息,合理建立数学模型——等差、等比数列模型.
    2、需要读懂题目所表达的具体含义,观察给定数列的特征,进而判断出该数列的通项与求和公式.
    3、求解时要明确目标,认清是求和、求通项、还是解递推关系问题,然后通过数学推理与计算得出结果,并回归实际问题中,进行检验,最终得出结论.
    【典型例题】
    例57.(2022·上海市行知中学高三期中)定义:对于各项均为整数的数列 SKIPIF 1 < 0 ,如果 SKIPIF 1 < 0 ( SKIPIF 1 < 0 =1,2,3,…)为完全平方数,则称数列 SKIPIF 1 < 0 具有“ SKIPIF 1 < 0 性质”;不论数列 SKIPIF 1 < 0 是否具有“ SKIPIF 1 < 0 性质”,如果存在数列 SKIPIF 1 < 0 与 SKIPIF 1 < 0 不是同一数列,且 SKIPIF 1 < 0 满足下面两个条件:
    (1) SKIPIF 1 < 0 是 SKIPIF 1 < 0 的一个排列;
    (2)数列 SKIPIF 1 < 0 具有“ SKIPIF 1 < 0 性质”,则称数列 SKIPIF 1 < 0 具有“变换 SKIPIF 1 < 0 性质”.给出下面三个数列:
    ①数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 ;
    ②数列 SKIPIF 1 < 0 :1,2,3,4,5;
    ③数列 SKIPIF 1 < 0 :1,2,3,4,5,6.
    具有“ SKIPIF 1 < 0 性质”的为________;具有“变换 SKIPIF 1 < 0 性质”的为_________.
    例58.(2022·江苏·沭阳县建陵高级中学高三阶段练习)在数列的每相邻两项之间插入这两项的和,组成一个新的数列,这样的操作叫做这个数列的一次“拓展”.先将数列1,2进行拓展,第一次拓展得到 SKIPIF 1 < 0 ;第二次拓展得到数列 SKIPIF 1 < 0 ;第 SKIPIF 1 < 0 次拓展得到数列 SKIPIF 1 < 0 .设 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 ___________, SKIPIF 1 < 0 ___________.
    例59.(2022·河北唐山·三模)角谷猜想又称冰雹猜想,是指任取一个正整数,如果它是奇数,就将它乘以3再加1;如果它是偶数,则将它除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈 SKIPIF 1 < 0 .如取正整数 SKIPIF 1 < 0 ,根据上述运算法则得出 SKIPIF 1 < 0 ,共需要经过8个步骤变成1(简称为8步“雹程”),已知数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 (m为正整数), SKIPIF 1 < 0 ①若 SKIPIF 1 < 0 ,则使得 SKIPIF 1 < 0 至少需要_______步雹程;②若 SKIPIF 1 < 0 ;则m所有可能取值的和为_______.
    例60.(2022·全国·华中师大一附中模拟预测)已知数列 SKIPIF 1 < 0 为1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是 SKIPIF 1 < 0 ,接下来的两项是 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,再接下来的三项是 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,依此规律类推.若其前n项和 SKIPIF 1 < 0 ,则称k为 SKIPIF 1 < 0 的一个理想数.将 SKIPIF 1 < 0 的理想数从小到大依次排成一列,则第二个理想数是______;当 SKIPIF 1 < 0 的项数 SKIPIF 1 < 0 时,其所有理想数的和为______.
    例61.(2022·吉林吉林·模拟预测(文))如果一个数列从第二项起,每一项与它前一项的差都大于2,则称这个数列为“ SKIPIF 1 < 0 数列”.已知数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则数列 SKIPIF 1 < 0 的通项公式 SKIPIF 1 < 0 ___________;若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且数列 SKIPIF 1 < 0 是“ SKIPIF 1 < 0 数列”,则t的取值范围是___________.
    例62.(2022·全国·模拟预测)将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级Kch曲线“”,将1级Kch曲线上每一线段重复上述步骤得到2级Kch曲线,同理可得3级Kch曲线(如图1),…,Kch曲线是几何中最简单的分形.若一个图形由N个与它的上一级图形相似,相似比为r的部分组成,称 SKIPIF 1 < 0 为该图形分形维数,则Kch曲线的分形维数是________.(精确到0.01, SKIPIF 1 < 0 )在第24届北京冬奥会开幕式上,一朵朵六角雪花(如图2)飘拂在国家体育场上空,畅想着“一起向未来”的美好愿景.六角雪花曲线是由正三角形的三边生成的三条1级Kch曲线组成,再将六角雪花曲线每一边生成一条1级Kch曲线得到2级十八角雪花曲线(如图3),…,依次得到n级Kn( SKIPIF 1 < 0 )角雪花曲线.若正三角形边长为1,则n级Kn角雪花曲线的周长 SKIPIF 1 < 0 ________.
    【新题速递】
    一、单选题
    1.(2022·全国·模拟预测)已知数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
    A.0B.50C.100D.2525
    2.(2022·黑龙江·哈尔滨市第六中学校高三期中)一百零八塔,位于宁夏吴忠青铜峡市,是始建于西夏时期的实心塔群,共分十二阶梯式平台,自上而下一共12层,每层的塔数均不少于上一层的塔数,总计108座.已知其中10层的塔数成公差不为零的等差数列,剩下两层的塔数之和为8,则第11层的塔数为( )
    A.17B.18C.19D.20
    3.(2022·江苏·常熟市中学高三阶段练习)等差数列 SKIPIF 1 < 0 各项均为正数,首项与公差相等, SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的值为( )
    A.9069B.9079C.9089D.9099
    4.(2022·浙江·绍兴市越州中学高三阶段练习)记 SKIPIF 1 < 0 表示不超过实数 SKIPIF 1 < 0 的最大整数,如 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( ).
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    5.(2022·上海市洋泾中学高三阶段练习)设等比数列 SKIPIF 1 < 0 ,首项 SKIPIF 1 < 0 ,实系数一元二次方程 SKIPIF 1 < 0 的两根为 SKIPIF 1 < 0 .若存在唯一的 SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 ,则公比 SKIPIF 1 < 0 的取值可能为( ).
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    6.(2022·全国·高三阶段练习)已知等差数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 的前n项和分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    7.(2022·广西·南宁市第十九中学模拟预测(文))数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 则满足 SKIPIF 1 < 0 的 SKIPIF 1 < 0 的最小值为( )
    A.16B.15C.14D.13
    8.(2022·福建省福州第十一中学高三期中)已知定义在 SKIPIF 1 < 0 上的函数 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上的最大值为 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),且 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    二、多选题
    9.(2022·江苏盐城·模拟预测)设等比数列 SKIPIF 1 < 0 的公比为q,其前n项和为 SKIPIF 1 < 0 ,前n项积为 SKIPIF 1 < 0 ,并满足条件 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,下列结论正确的是( )
    A. SKIPIF 1 < 0
    B. SKIPIF 1 < 0
    C. SKIPIF 1 < 0 是数列 SKIPIF 1 < 0 中的最大值
    D.若 SKIPIF 1 < 0 ,则n最大为4038.
    10.(2022·江苏南京·模拟预测)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
    C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    11.(2022·山西临汾·高三阶段练习)已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,则( )
    A.若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 是等差数列
    B.若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 是等比数列
    C.若 SKIPIF 1 < 0 是等差数列,则 SKIPIF 1 < 0
    D.若 SKIPIF 1 < 0 是等比数列,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0
    12.(2022·山东·微山县第二中学高三期中)设等比数列 SKIPIF 1 < 0 的公比为q,其前n项和为 SKIPIF 1 < 0 ,前n项积为 SKIPIF 1 < 0 ,且满足条件 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则下列选项正确的是( )
    A. SKIPIF 1 < 0 为递减数列B. SKIPIF 1 < 0
    C. SKIPIF 1 < 0 是数列 SKIPIF 1 < 0 中的最大项D. SKIPIF 1 < 0
    三、填空题
    13.(2022·全国·模拟预测)已知正实数b是实数a和实数c的等差中项,且 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列,则 SKIPIF 1 < 0 ______.
    14.(2022·全国·模拟预测)若定义在 SKIPIF 1 < 0 上的函数 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 恰有 SKIPIF 1 < 0 ( SKIPIF 1 < 0 )个根 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ,2,…, SKIPIF 1 < 0 ), SKIPIF 1 < 0 ,则数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 ___________.
    15.(2022·全国·模拟预测)已知等比数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,记 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,前n项积为 SKIPIF 1 < 0 ,则使不等式 SKIPIF 1 < 0 成立的n的最大值为___________.
    16.(2022·河北·高三期中)定义n个正数 SKIPIF 1 < 0 的“均倒数”为 SKIPIF 1 < 0 ,若各项均为正数的数列 SKIPIF 1 < 0 的前n项的“均倒数”为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的值为______
    四、解答题
    17.(2022·全国·模拟预测)已知等比数列 SKIPIF 1 < 0 的首项 SKIPIF 1 < 0 ,公比为q, SKIPIF 1 < 0 是公差为 SKIPIF 1 < 0 的等差数列, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 是 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的等比中项.
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)设 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
    18.(2022·全国·模拟预测)已知数列 SKIPIF 1 < 0 的各项均不为零, SKIPIF 1 < 0 ,前n项和 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 .
    (1)求证:数列 SKIPIF 1 < 0 是等差数列;
    (2)记 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
    19.(2022·全国·模拟预测)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)求证:数列 SKIPIF 1 < 0 是等差数列;
    (2)若数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的前n项和.
    20.(2022·全国·模拟预测)在① SKIPIF 1 < 0 ,② SKIPIF 1 < 0 ,③数列 SKIPIF 1 < 0 为等比数列这三个条件中选出两个,补充在下面的横线上,并解答这个问题.
    问题:已知等比数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,___________.
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)若 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值.
    注:如果选择不同的组合分别解答,则按第一个解答计分.
    21.(2022·安徽·蒙城第一中学高三阶段练习)已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 .
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)令 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
    22.(2022·上海市洋泾中学高三阶段练习)已知各项均为正数的数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,向量 SKIPIF 1 < 0 ,向量 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)若对任意正整数 SKIPIF 1 < 0 都有 SKIPIF 1 < 0 成立,求 SKIPIF 1 < 0 .
    23.(2022·江苏盐城·模拟预测)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),且 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ).
    (1)求数列 SKIPIF 1 < 0 的通项公式;
    (2)若 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),求数列 SKIPIF 1 < 0 的前n项和.

    相关试卷

    新高考数学二轮复习讲练专题09 数列的通项公式、数列求和及综合应用(练习)(2份打包,原卷版+解析版):

    这是一份新高考数学二轮复习讲练专题09 数列的通项公式、数列求和及综合应用(练习)(2份打包,原卷版+解析版),文件包含新高考数学二轮复习讲练专题09数列的通项公式数列求和及综合应用练习原卷版doc、新高考数学二轮复习讲练专题09数列的通项公式数列求和及综合应用练习解析版doc等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。

    新高考数学二轮复习讲练测 专题04 数列的通项、求和及综合应用(精讲精练):

    这是一份新高考数学二轮复习讲练测 专题04 数列的通项、求和及综合应用(精讲精练),文件包含专题04数列的通项求和及综合应用精讲精练原卷版docx、专题04数列的通项求和及综合应用精讲精练解析版docx等2份试卷配套教学资源,其中试卷共87页, 欢迎下载使用。

    专题04 数列的通项、求和及综合应用(精讲精练)-2023年高考数学二轮复习讲练测(新高考专用):

    这是一份专题04 数列的通项、求和及综合应用(精讲精练)-2023年高考数学二轮复习讲练测(新高考专用),文件包含专题04数列的通项求和及综合应用精讲精练原卷版docx、专题04数列的通项求和及综合应用精讲精练解析版docx等2份试卷配套教学资源,其中试卷共86页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map