年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    新高考数学二轮复习圆锥曲线重难点提升专题8 利用均值不等式求圆锥曲线中的最值(2份打包,原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      新高考数学二轮复习圆锥曲线重难点提升专题8 利用均值不等式求圆锥曲线中的最值(原卷版).doc
    • 练习
      新高考数学二轮复习圆锥曲线重难点提升专题8 利用均值不等式求圆锥曲线中的最值(解析版).doc
    新高考数学二轮复习圆锥曲线重难点提升专题8 利用均值不等式求圆锥曲线中的最值(原卷版)第1页
    新高考数学二轮复习圆锥曲线重难点提升专题8 利用均值不等式求圆锥曲线中的最值(原卷版)第2页
    新高考数学二轮复习圆锥曲线重难点提升专题8 利用均值不等式求圆锥曲线中的最值(原卷版)第3页
    新高考数学二轮复习圆锥曲线重难点提升专题8 利用均值不等式求圆锥曲线中的最值(解析版)第1页
    新高考数学二轮复习圆锥曲线重难点提升专题8 利用均值不等式求圆锥曲线中的最值(解析版)第2页
    新高考数学二轮复习圆锥曲线重难点提升专题8 利用均值不等式求圆锥曲线中的最值(解析版)第3页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学二轮复习圆锥曲线重难点提升专题8 利用均值不等式求圆锥曲线中的最值(2份打包,原卷版+解析版)

    展开

    这是一份新高考数学二轮复习圆锥曲线重难点提升专题8 利用均值不等式求圆锥曲线中的最值(2份打包,原卷版+解析版),文件包含新高考数学二轮复习圆锥曲线重难点提升专题8利用均值不等式求圆锥曲线中的最值原卷版doc、新高考数学二轮复习圆锥曲线重难点提升专题8利用均值不等式求圆锥曲线中的最值解析版doc等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
    与圆锥曲线有关的最值问题,在高考中常以解答题形式考查,且难度较大,它能综合应用函数、三角、不等式等有关知识,因而备受命题者青睐,其中利用均值不等式求圆锥曲线中的最值是一类常见问题,求解时常涉及函数与方程、化归转化等数学思想.
    二、解题秘籍
    (一) 利用均值不等式求圆锥曲线中最值的方法与策略
    利用均值不等式求圆锥曲线中的最值,一是直接根据圆锥曲线中的和(积)为定值的性质求积(和)的最大(小)值,如根据椭圆中 SKIPIF 1 < 0 为定值,可求 SKIPIF 1 < 0 的最大值,二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用基本不等式求最值,求解这类问题的核心是建立参数之间的等量关系.
    【例1】(2023届湖北省荆荆宜三校高三上学期9月联考)设椭圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 是椭圆 SKIPIF 1 < 0 的左、右焦点,点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 上,点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 外,且 SKIPIF 1 < 0 .
    (1)求椭圆 SKIPIF 1 < 0 的方程;
    (2)若 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 为椭圆 SKIPIF 1 < 0 上横坐标大于1的一点,过点 SKIPIF 1 < 0 的直线 SKIPIF 1 < 0 与椭圆有且仅有一个交点,并与直线 SKIPIF 1 < 0 , SKIPIF 1 < 0 交于M,N两点, SKIPIF 1 < 0 为坐标原点,记 SKIPIF 1 < 0 , SKIPIF 1 < 0 的面积分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的最小值.
    【解析】(1)因为点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 上,所以 SKIPIF 1 < 0 ,①
    因为点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 外,且 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,②
    由①②解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    故椭圆 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 .
    (2)设点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,设直线 SKIPIF 1 < 0 : SKIPIF 1 < 0 ,
    由椭圆性质以及点 SKIPIF 1 < 0 的横坐标大于1可知, SKIPIF 1 < 0 ,
    将直线 SKIPIF 1 < 0 代入方程 SKIPIF 1 < 0 并化简可得, SKIPIF 1 < 0 ,
    即 SKIPIF 1 < 0 ,
    因为直线 SKIPIF 1 < 0 与椭圆有且仅有一个交点,
    所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
    直线 SKIPIF 1 < 0 的方程为: SKIPIF 1 < 0 ;直线 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 : SKIPIF 1 < 0 ,
    联立方程 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,同理得 SKIPIF 1 < 0 ,
    所以 SKIPIF 1 < 0 ,
    所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    所以 SKIPIF 1 < 0
    SKIPIF 1 < 0 ,
    令 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
    当且仅当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时,不等式取等号,
    故当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 取得最小值 SKIPIF 1 < 0 .
    【例2】已知椭圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 的离心率为 SKIPIF 1 < 0 ,且过点 SKIPIF 1 < 0 .
    (1)求椭圆 SKIPIF 1 < 0 的方程;
    (2)若直线 SKIPIF 1 < 0 被圆 SKIPIF 1 < 0 截得的弦长为 SKIPIF 1 < 0 ,设直线 SKIPIF 1 < 0 与椭圆 SKIPIF 1 < 0 交于A, SKIPIF 1 < 0 两点, SKIPIF 1 < 0 为坐标原点,求 SKIPIF 1 < 0 面积的最大值.
    【解析】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    由椭圆过点 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴椭圆 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 .
    (2)直线 SKIPIF 1 < 0 被圆 SKIPIF 1 < 0 截得的弦长为 SKIPIF 1 < 0 ,则圆心到直线l的距离d满足 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
    当 SKIPIF 1 < 0 的斜率存在时,设 SKIPIF 1 < 0 : SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,圆心为原点
    则有 SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 .
    将 SKIPIF 1 < 0 方程代入椭圆方程中整理得: SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,当且仅当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时取等号.
    当 SKIPIF 1 < 0 的斜率不存在时,则 SKIPIF 1 < 0 : SKIPIF 1 < 0 ,过椭圆的左、右顶点,此时直线 SKIPIF 1 < 0 与椭圆只有一个交点,不符合题意.
    ∴ SKIPIF 1 < 0 面积的最大值为2.
    (二) 把距离或长度用单变量表示,然后利用均值不等式求最值.
    此类问题通常利用两点间距离或弦长公式,把距离或长度表示成关于直线斜率、截距或点的横坐标(纵坐标)的函数,然后利用均值不等式求最值.
    【例3】已知圆C过定点A(0,p)(p>0),圆心C在抛物线x2=2py上运动,若MN为圆C在x轴上截得的弦,设|AM|=m,|AN|=n,∠MAN=θ.
    (1)当点C运动时,|MN|是否变化?试证明你的结论;
    (2)求 SKIPIF 1 < 0 的最大值.
    【解析】(1)设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,故圆 SKIPIF 1 < 0 的方程 SKIPIF 1 < 0 ,令 SKIPIF 1 < 0 有 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 不变化,为定值
    (2)由(1)不妨设 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 ,当且仅当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时取等号.故 SKIPIF 1 < 0 的最大值为 SKIPIF 1 < 0
    (三) 把面积表示为单变量函数,然后利用基本不等式求值
    该类问题求解的基本思路是把三角形面积表示成关于直线斜率与截距的函数,然后利用均值不等式求最值.
    【例4】(2022届陕西省汉中市高三上学期质量检测)已知椭圆 SKIPIF 1 < 0 的左,右焦点分别为 SKIPIF 1 < 0 且经过点 SKIPIF 1 < 0 .
    (1)求椭圆C的标准方程;
    (2)若斜率为1的直线与椭圆C交于A,B两点,求 SKIPIF 1 < 0 面积的最大值(O为坐标原点)
    【解析】(1)由椭圆的定义,
    可知 SKIPIF 1 < 0
    解得 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 .
    SKIPIF 1 < 0 椭圆C的标准方程为 SKIPIF 1 < 0 .
    (2)设直线l的方程为 SKIPIF 1 < 0 ,
    联立椭圆方程,得 SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 ,得 SKIPIF 1 < 0
    设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
    SKIPIF 1 < 0
    SKIPIF 1 < 0 ,
    点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离 SKIPIF 1 < 0 ,
    SKIPIF 1 < 0
    SKIPIF 1 < 0 .
    当且仅当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时取等号;
    SKIPIF 1 < 0 面积的最大值为 SKIPIF 1 < 0 .
    (四) 把面积用双变量表示,然后利用均值不等式求最值
    求解该类问题通常先建立两个变量之间的等量关系,然后利用和或积为定值,借助均值不等式求最值.
    【例5】(2022届湖南省长沙市高三上学期11月月考)已知椭圆 SKIPIF 1 < 0 的离心率为 SKIPIF 1 < 0 , SKIPIF 1 < 0 为椭圆上一点.直线 SKIPIF 1 < 0 不经过原点 SKIPIF 1 < 0 ,且与椭圆交于 SKIPIF 1 < 0 两点.
    (1)求椭圆的方程;
    (2)求 SKIPIF 1 < 0 面积的最大值,并求当 SKIPIF 1 < 0 面积最大时 SKIPIF 1 < 0 的取值范围.
    【解析】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    将 SKIPIF 1 < 0 代入得 SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 椭圆方程为 SKIPIF 1 < 0 .
    (2)设 SKIPIF 1 < 0 ,
    与椭圆联立得: SKIPIF 1 < 0 ,
    所以 SKIPIF 1 < 0 .
    则 SKIPIF 1 < 0 ,
    因为 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ,
    所以 SKIPIF 1 < 0
    当且仅当 SKIPIF 1 < 0 时取等号,此时 SKIPIF 1 < 0 ,符合题意.
    所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 面积的最大值为 SKIPIF 1 < 0 .
    当 SKIPIF 1 < 0 不存在时,设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时取等号.
    综上, SKIPIF 1 < 0 面积的最大值为1
    当 SKIPIF 1 < 0 面积最大时:
    若 SKIPIF 1 < 0 存在,则此时 SKIPIF 1 < 0 ,
    则 SKIPIF 1 < 0 ,
    若 SKIPIF 1 < 0 不存在,则此时 SKIPIF 1 < 0 .
    综上, SKIPIF 1 < 0 ..
    (五)与斜率有关的最值问题
    与斜率有关的最值问题的思路一是设出动点.是利用斜率定义表示出斜率,然后利用函数或不等式知识求解,二是设出直线的点斜式或斜截式方程,利用根与系数之间的关系或题中条件整理关于斜率的等式或不等式求解.
    【例6】(2022届福建省福州第十八中学高三上学期考试)已知抛物线 SKIPIF 1 < 0 的焦点 SKIPIF 1 < 0 到准线的距离为2.
    (1)求 SKIPIF 1 < 0 的方程;
    (2)已知 SKIPIF 1 < 0 为坐标原点,点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上,点 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,求直线 SKIPIF 1 < 0 斜率的最大值.
    【解析】(1)抛物线 SKIPIF 1 < 0 的焦点 SKIPIF 1 < 0 ,准线方程为 SKIPIF 1 < 0 ,
    由题意,该抛物线焦点到准线的距离为 SKIPIF 1 < 0 ,
    所以该抛物线的方程为 SKIPIF 1 < 0 ;
    (2)设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
    所以 SKIPIF 1 < 0 ,
    由 SKIPIF 1 < 0 在抛物线上可得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
    据此整理可得点 SKIPIF 1 < 0 的轨迹方程为 SKIPIF 1 < 0 ,
    所以直线 SKIPIF 1 < 0 的斜率 SKIPIF 1 < 0 ,
    当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;
    当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
    当 SKIPIF 1 < 0 时,因为 SKIPIF 1 < 0 ,
    此时 SKIPIF 1 < 0 ,当且仅当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时,等号成立;
    当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;
    综上,直线 SKIPIF 1 < 0 的斜率的最大值为 SKIPIF 1 < 0 .
    (六)与数量积有关的最值问题
    求解与数量积有关的最值问题,通常利用数量积的定义或坐标运算,把数量积表示成某个变量的函数,然后再利用均值不等式求最值.
    【例7】设椭圆 SKIPIF 1 < 0 的两条互相垂直的切线的交点轨迹为C,曲线C的两条切线PA、PB交于点P,且与C分别切于A、B两点,求 SKIPIF 1 < 0 的最小值.
    【解析】设椭圆的两切线为 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    ①当 SKIPIF 1 < 0 轴或 SKIPIF 1 < 0 轴时,对应 SKIPIF 1 < 0 轴或 SKIPIF 1 < 0 轴,可知切点为;
    ②当 SKIPIF 1 < 0 与x轴不垂直且不平行时, SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 的斜率为k,则 SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 的斜率为 SKIPIF 1 < 0 ,并设 SKIPIF 1 < 0 的交点为 SKIPIF 1 < 0 ,
    则 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 ,联立 SKIPIF 1 < 0 ,
    得: SKIPIF 1 < 0 ,
    ∵直线与椭圆相切,∴ SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴k是方程 SKIPIF 1 < 0 的一个根,
    同理 SKIPIF 1 < 0 是方程 SKIPIF 1 < 0 的另一个根,
    ∴ SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 ,
    ∴交点的轨迹方程为: SKIPIF 1 < 0 ,∵ SKIPIF 1 < 0 也满足上式;
    综上知:轨迹C方程为 SKIPIF 1 < 0 ;
    设 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则在 SKIPIF 1 < 0 与 SKIPIF 1 < 0 中应用余弦定理知,
    SKIPIF 1 < 0 ,
    即 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 ,
    令 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 SKIPIF 1 < 0 ,
    当且仅当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时, SKIPIF 1 < 0 取得最小 SKIPIF 1 < 0 ;
    综上, SKIPIF 1 < 0 的最小为 SKIPIF 1 < 0 .
    三、跟踪检测
    1.(2023届山东省青岛市高三上学期检测)在平面直角坐标系 SKIPIF 1 < 0 中,动圆 SKIPIF 1 < 0 与圆 SKIPIF 1 < 0 内切,且与圆 SKIPIF 1 < 0 外切,记动圆 SKIPIF 1 < 0 的圆心的轨迹为 SKIPIF 1 < 0 .
    (1)求轨迹 SKIPIF 1 < 0 的方程;
    (2)不过圆心 SKIPIF 1 < 0 且与 SKIPIF 1 < 0 轴垂直的直线交轨迹 SKIPIF 1 < 0 于 SKIPIF 1 < 0 两个不同的点,连接 SKIPIF 1 < 0 交轨迹 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .
    (i)若直线 SKIPIF 1 < 0 交 SKIPIF 1 < 0 轴于点 SKIPIF 1 < 0 ,证明: SKIPIF 1 < 0 为一个定点;
    (ii)若过圆心 SKIPIF 1 < 0 的直线交轨迹 SKIPIF 1 < 0 于 SKIPIF 1 < 0 两个不同的点,且 SKIPIF 1 < 0 ,求四边形 SKIPIF 1 < 0 面积的最小值.
    2.已知椭圆 SKIPIF 1 < 0 经过点 SKIPIF 1 < 0 ,且椭圆的离心率 SKIPIF 1 < 0 ,过椭圆的右焦点 SKIPIF 1 < 0 作两条互相垂直的直线,分别交椭圆于点 SKIPIF 1 < 0 及 SKIPIF 1 < 0 、 SKIPIF 1 < 0 .
    (1)求椭圆的方程;
    (2)求证: SKIPIF 1 < 0 为定值;
    (3)求 SKIPIF 1 < 0 的最小值.
    3.(2023届四川省隆昌市第一中学高三上学期考试)已知离心率为 SKIPIF 1 < 0 的椭圆 SKIPIF 1 < 0 过点 SKIPIF 1 < 0 ,抛物线 SKIPIF 1 < 0 .
    (1)若抛物线 SKIPIF 1 < 0 的焦点恰为椭圆 SKIPIF 1 < 0 的右顶点,求抛物线方程;
    (2)若椭圆 SKIPIF 1 < 0 与抛物线 SKIPIF 1 < 0 在第一象限的交点为 SKIPIF 1 < 0 ,过 SKIPIF 1 < 0 但不经过原点的直线 SKIPIF 1 < 0 交椭圆 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,交抛物线 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的最大值,并求出此时直线 SKIPIF 1 < 0 的斜率.
    4.平面直角坐标系中,椭圆 SKIPIF 1 < 0 的焦距为 SKIPIF 1 < 0 ,过焦点的最短弦长为 SKIPIF 1 < 0 .
    (1)求椭圆的标准方程;
    (2)斜率为 SKIPIF 1 < 0 的直线与椭圆交于 SKIPIF 1 < 0 两点, SKIPIF 1 < 0 为椭圆上异于 SKIPIF 1 < 0 的点,求 SKIPIF 1 < 0 的面积的最大值.
    5.平面直角坐标系中,过点 SKIPIF 1 < 0 的圆 SKIPIF 1 < 0 与直线 SKIPIF 1 < 0 相切.圆心 SKIPIF 1 < 0 的轨迹记为曲线 SKIPIF 1 < 0 .
    (1)求曲线 SKIPIF 1 < 0 的方程;
    (2)设 SKIPIF 1 < 0 为曲线 SKIPIF 1 < 0 上的两点,记 SKIPIF 1 < 0 中点为 SKIPIF 1 < 0 ,过 SKIPIF 1 < 0 作 SKIPIF 1 < 0 的垂线交 SKIPIF 1 < 0 轴于 SKIPIF 1 < 0 .
    ①求 SKIPIF 1 < 0 ;
    ②当 SKIPIF 1 < 0 时,求 SKIPIF 1 < 0 的最大值.
    6.已知点 SKIPIF 1 < 0 分别为椭圆 SKIPIF 1 < 0 的左、右焦点,直线 SKIPIF 1 < 0 与椭圆 SKIPIF 1 < 0 有且仅有一个公共点,直线 SKIPIF 1 < 0 ,垂足分别为点 SKIPIF 1 < 0 .
    (1)求证: SKIPIF 1 < 0 ;
    (2)求证: SKIPIF 1 < 0 为定值,并求出该定值;
    (3)求 SKIPIF 1 < 0 的最大值.
    7.(2022届广东省佛山市高三上学期12月模拟)在平面直角坐标系 SKIPIF 1 < 0 中,椭圆 SKIPIF 1 < 0 的离心率 SKIPIF 1 < 0 ,且点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 上.
    (1)求椭圆 SKIPIF 1 < 0 的方程;
    (2)若点 SKIPIF 1 < 0 都在椭圆 SKIPIF 1 < 0 上,且 SKIPIF 1 < 0 中点 SKIPIF 1 < 0 在线段 SKIPIF 1 < 0 (不包括端点)上.求 SKIPIF 1 < 0 面积的最大值.
    8.(2022届衡水金卷高三一轮复习摸底测试)已知椭圆 SKIPIF 1 < 0 的上顶点为 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 且与 SKIPIF 1 < 0 轴垂直的直线被截得的线段长为 SKIPIF 1 < 0 .
    (1)求椭圆 SKIPIF 1 < 0 的标准方程﹔
    (2)设直线 SKIPIF 1 < 0 交椭圆 SKIPIF 1 < 0 于异于点 SKIPIF 1 < 0 的 SKIPIF 1 < 0 两点,以 SKIPIF 1 < 0 为直径的圆经过点 SKIPIF 1 < 0 线段 SKIPIF 1 < 0 的中垂线 SKIPIF 1 < 0 与 SKIPIF 1 < 0 轴的交点为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的取值范围.
    9.(2022届河北省高三上学期12月教学质量监测)在平面直角坐标系 SKIPIF 1 < 0 中,已知点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 的轨迹为 SKIPIF 1 < 0 .
    (1)求 SKIPIF 1 < 0 的方程;
    (2)不过 SKIPIF 1 < 0 的直线 SKIPIF 1 < 0 与 SKIPIF 1 < 0 交于 SKIPIF 1 < 0 、 SKIPIF 1 < 0 两点,若直线 SKIPIF 1 < 0 的斜率是直线 SKIPIF 1 < 0 、 SKIPIF 1 < 0 斜率的等差中项,直线 SKIPIF 1 < 0 和线段 SKIPIF 1 < 0 的垂直平分线与 SKIPIF 1 < 0 轴分别交于 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的最小值.
    10.已知两圆 SKIPIF 1 < 0 ,动圆 SKIPIF 1 < 0 在圆 SKIPIF 1 < 0 内部且和圆 SKIPIF 1 < 0 内切,和圆 SKIPIF 1 < 0 外切.
    (1)求动圆圆心 SKIPIF 1 < 0 的轨迹 SKIPIF 1 < 0 的方程;
    (2)过点 SKIPIF 1 < 0 的直线与曲线 SKIPIF 1 < 0 交于 SKIPIF 1 < 0 两点. SKIPIF 1 < 0 关于 SKIPIF 1 < 0 轴的对称点为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 面积的最大值.
    11.已知椭圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 ( SKIPIF 1 < 0 )的离心率为 SKIPIF 1 < 0 ,分别过左、右焦点 SKIPIF 1 < 0 , SKIPIF 1 < 0 作两条平行直线 SKIPIF 1 < 0 和 SKIPIF 1 < 0 .
    (1)求 SKIPIF 1 < 0 和 SKIPIF 1 < 0 之间距离的最大值;
    (2)设 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的一个交点为 SKIPIF 1 < 0 , SKIPIF 1 < 0 与 SKIPIF 1 < 0 的一个交点为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 位于 SKIPIF 1 < 0 轴同侧,求四边形 SKIPIF 1 < 0 面积的最大值.
    12.(2022届广西玉林市、贵港市高三12月模拟)设椭圆 SKIPIF 1 < 0 过 SKIPIF 1 < 0 , SKIPIF 1 < 0 两点, SKIPIF 1 < 0 为坐标原点.
    (1)求椭圆 SKIPIF 1 < 0 的方程;
    (2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆 SKIPIF 1 < 0 恒有两个交点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ?若存在,写出该圆的方程,并求 SKIPIF 1 < 0 的取值范围;若不存在,说明理由.
    13.(2022届上海市青浦区高三一模)已知抛物线.
    (1)过抛物线焦点的直线交抛物线于两点,求的值(其中为坐标原点);
    (2)过抛物线上一点,分别作两条直线交抛物线于另外两点、,交直线于两点,求证:为常数
    (3)已知点,在抛物线上是否存在异于点的两个不同点,使得若存在,求点纵坐标的取值范围,若不存在,请说明理由.

    相关试卷

    新高考数学二轮复习圆锥曲线重难点提升专题1 圆锥曲线的方程与轨迹方程(2份打包,原卷版+解析版):

    这是一份新高考数学二轮复习圆锥曲线重难点提升专题1 圆锥曲线的方程与轨迹方程(2份打包,原卷版+解析版),文件包含新高考数学二轮复习圆锥曲线重难点提升专题1圆锥曲线的方程与轨迹方程原卷版doc、新高考数学二轮复习圆锥曲线重难点提升专题1圆锥曲线的方程与轨迹方程解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。

    新高考数学一轮复习 圆锥曲线专项重难点突破专题28 圆锥曲线中的范围和最值问题(2份打包,原卷版+解析版):

    这是一份新高考数学一轮复习 圆锥曲线专项重难点突破专题28 圆锥曲线中的范围和最值问题(2份打包,原卷版+解析版),文件包含新高考数学一轮复习圆锥曲线专项重难点突破专题28圆锥曲线中的范围和最值问题原卷版doc、新高考数学一轮复习圆锥曲线专项重难点突破专题28圆锥曲线中的范围和最值问题解析版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    新高考数学一轮复习 圆锥曲线专项重难点突破专题17 抛物线中的最值问题(2份打包,原卷版+解析版):

    这是一份新高考数学一轮复习 圆锥曲线专项重难点突破专题17 抛物线中的最值问题(2份打包,原卷版+解析版),文件包含新高考数学一轮复习圆锥曲线专项重难点突破专题17抛物线中的最值问题原卷版doc、新高考数学一轮复习圆锥曲线专项重难点突破专题17抛物线中的最值问题解析版doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map