所属成套资源:新高考数学一轮复习教案 (含解析)
新高考数学一轮复习教案第3章第1节 导数的概念及运算(含解析)
展开
这是一份新高考数学一轮复习教案第3章第1节 导数的概念及运算(含解析),共17页。
核心素养立意下的命题导向
1.与基本初等函数相结合考查函数导数的计算,凸显数学运算的核心素养.
2.与曲线方程相结合考查导数的几何意义,凸显数学运算、直观想象的核心素养.
[理清主干知识]
1.导数的概念
函数y=f(x)在x=x0处的瞬时变化率lieq \(m,\s\d4(Δx→0)) eq \f(Δy,Δx)=lieq \(m,\s\d4(Δx→0)) eq \f(fx0+Δx-fx0,Δx)为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=lieq \(m,\s\d4(Δx→0)) eq \f(Δy,Δx)=lieq \(m,\s\d4(Δx→0)) eq \f(fx0+Δx-fx0,Δx).称函数f′(x)=lieq \(m,\s\d4(Δx→0)) eq \f(fx+Δx-fx,Δx)为f(x)的导函数.
2.基本初等函数的导数公式
3.导数运算法则
(1)[f(x)±g(x)]′=f′(x)±g′(x);
(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
(3)eq \b\lc\[\rc\](\a\vs4\al\c1(\f(fx,gx)))′=eq \f(f′xgx-fxg′x,[gx]2)(g(x)≠0).
4.导数的几何意义
函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).特别地,如果曲线y=f(x)在点(x0,y0)处的切线垂直于x轴,则此时导数f′(x0)不存在,由切线定义可知,切线方程为x=x0.
5.复合函数的导数
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′,即y对x的导数等于y对u的导数与u对x的导数的乘积.
[澄清盲点误点]
一、关键点练明
1.(商的导数)若函数f(x)=eq \f(x,ex)(e是自然对数的底数),则其导函数f′(x)=( )
A.eq \f(1+x,ex) B.eq \f(1-x,ex)
C.1+x D.1-x
答案:B
2.(导数的运算)已知f(x)=13-8x+2x2,f′(x0)=4,则x0=________.
解析:∵f′(x)=-8+4x,∴f′(x0)=-8+4x0=4,解得x0=3.
答案:3
3.(求切线方程)曲线y=lg2x在点(1,0)处的切线与坐标轴所围成三角形的面积等于________.
解析:∵y′=eq \f(1,xln 2),∴切线的斜率k=eq \f(1,ln 2),∴切线方程为y=eq \f(1,ln 2)(x-1),∴所求三角形的面积S=eq \f(1,2)×1×eq \f(1,ln 2)=eq \f(1,2ln 2)=eq \f(1,2)lg2e.
答案:eq \f(1,2)lg2e
4.(已知切线求参数)已知函数f(x)=axln x+b(a,b∈R),若f(x)的图象在x=1处的切线方程为2x-y=0,则a+b=________.
解析:由题意,得f′(x)=aln x+a,所以f′(1)=a,因为函数f(x)的图象在x=1处的切线方程为2x-y=0,所以a=2,又f(1)=b,则2×1-b=0,所以b=2,故a+b=4.
答案:4
二、易错点练清
1.(多选·混淆求导公式)下列导数的运算中正确的是( )
A.(3x)′=3xln 3 B.(x2ln x)′=2xln x+x
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(cs x,x)))′=eq \f(xsin x-cs x,x2) D.(sin xcs x)′=cs 2x
解析:选ABD 因为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(cs x,x)))′=eq \f(-xsin x-cs x,x2),所以C项错误,其余都正确.
2.(混淆点P处的切线和过P点的切线)函数f(x)=x2+eq \f(1,x)的图象在点(1,f(1))处的切线方程为( )
A.x-y+1=0 B.3x-y-1=0
C.x-y-1=0 D.3x-y+1=0
解析:选A 函数f(x)=x2+eq \f(1,x)的导数为f′(x)=2x-eq \f(1,x2),
可得图象在点(1,f(1))处的切线斜率为k=2-1=1,
切点为(1,2),
可得图象在点(1,f(1))处的切线方程为y-2=x-1,
即x-y+1=0.故选A.
考点一 导数的运算
[典题例析]
(1)设f(x)=x(2 020+ln x),若f′(x0)=2 021,则x0等于( )
A.e2 B.1
C.ln 2 D.e
(2)(2021·日照质检)已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)=( )
A.-e B.1
C.-1 D.e
(3)函数f(x)=xsineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,2)))cseq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,2))),则其导函数f′(x)=________________.
[解析] (1)f′(x)=2 020+ln x+1=2 021+ln x,由f′(x0)=2 021,得2 021+ln x0= 2 021,则ln x0=0,解得x0=1.
(2)由题可得f′(x)=2f′(1)+eq \f(1,x),则f′(1)=2f′(1)+1,解得f′(1)=-1,故选C.
(3)∵f(x)=xsineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,2)))cseq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,2)))
=eq \f(1,2)xsin(4x+π)=-eq \f(1,2)xsin 4x,
∴f′(x)=-eq \f(1,2)sin 4x-eq \f(1,2)x·4cs 4x
=-eq \f(1,2)sin 4x-2xcs 4x.
[答案] (1)B (2)C (3)-eq \f(1,2)sin 4x-2xcs 4x
[方法技巧]
1.导数运算的常见形式及其求解方法
2.解决解析式中含有导数值问题的策略
解决解析式中含有导数值的函数,即解析式类似f(x)=f′(x0)g(x)+h(x)(x0为常数)的函数问题的关键是恰当赋值,然后活用方程思想求解,即先求导数f′(x),然后令x=x0,即可得到f′(x0)的值,进而得到函数解析式,最后求得所求导数值.
[针对训练]
1.已知函数f(x)=ln(ax-1)的导函数为f′(x),若f′(2)=2,则实数a的值为( )
A.eq \f(1,2) B.eq \f(2,3)
C.eq \f(3,4) D.1
解析:选B 因为f′(x)=eq \f(a,ax-1),所以f′(2)=eq \f(a,2a-1)=2,解得a=eq \f(2,3).故选B.
2.(2021·长沙一模)等比数列{an}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f′(0)=( )
A.26 B.29
C.212 D.215
解析:选C f′(x)=(x-a1)(x-a2)…(x-a8)+x[(x-a1)(x-a2)·…·(x-a8)]′,所以f′(0)=a1a2a3…a8=(a1a8)4=(2×4)4=212.故选C.
3.已知f(x)=x2+2xf′(1),则f′(0)=________.
解析:∵f′(x)=2x+2f′(1),
∴f′(1)=2+2f′(1),∴f′(1)=-2.
∴f′(0)=2f′(1)=2×(-2)=-4.
答案:-4
考点二 导数的几何意义
考法(一) 求切线方程
[例1] 已知函数f(x)=x2.
(1)求曲线f(x)在点(1,f(1))处的切线方程;
(2)求经过点P(-1,0)的曲线f(x)的切线方程.
[解] (1)∵f(x)=x2,∴f′(x)=2x,
∴f′(1)=2,又f(1)=1,
∴曲线在点(1,f(1))处的切线方程为
y-1=2(x-1),即2x-y-1=0.
(2)设切点坐标为(x0,xeq \\al(2,0)).
∵f′(x0)=2x0,∴切线方程为y-0=2x0(x+1),
又∵切点(x0,xeq \\al(2,0))在切线上,
∴代入切线方程得xeq \\al(2,0)=2x0(x0+1),
即xeq \\al(2,0)+2x0=0,解得x0=0或x0=-2.
∴所求切线方程为y=0或y=-4(x+1),
即y=0或4x+y+4=0.
[方法技巧]
求切线方程问题的2种类型及方法
(1)求“在”曲线y=f(x)上一点P(x0,y0)处的切线方程:
点P(x0,y0)为切点,切线斜率为k=f′(x0),有唯一的一条切线,对应的切线方程为y-y0=f′(x0)(x-x0).
(2)求“过”曲线y=f(x)上一点P(x0,y0)的切线方程:
切线经过点P,点P可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”求解,即:
①设切点A(x1,y1),则以A为切点的切线方程为y-y1=f′(x1)(x-x1);
②根据题意知点P(x0,y0)在切线上,点A(x1,y1)在曲线y=f(x)上,得到方程组eq \b\lc\{\rc\ (\a\vs4\al\c1(y1=fx1,,y0-y1=f′x1x0-x1,))求出切点A(x1,y1),代入方程y-y1=f′(x1)(x-x1),化简即得所求的切线方程.
考法(二) 求参数值或范围
[例2] 已知曲线f(x)=e2x-2ex+ax-1存在两条斜率为3的切线,则实数a的取值范围是( )
A.eq \b\lc\(\rc\)(\a\vs4\al\c1(3,\f(7,2))) B.(3,+∞)
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,\f(7,2))) D.(0,3)
[解析] 由题得f′(x)=2e2x-2ex+a,
则方程2e2x-2ex+a=3有两个不同的正解,
令t=ex(t>0),且g(t)=2t2-2t+a-3,
则由图象可知,有g(0)>0且Δ>0,
即a-3>0且4-8(a-3)>0,解得30)恒成立,所以a≥0,故实数a的取值范围为[0,+∞).故选D.
11.(多选)已知点A(1,2)在函数f(x)=ax3的图象上,则过点A的曲线C:y=f(x)的切线方程是( )
A.6x-y-4=0 B.x-4y+7=0
C.3x-2y+1=0 D.4x-y+3=0
解析:选AC 由点A(1,2)在函数f(x)=ax3的图象上,得a=2,则f(x)=2x3,f′(x)=6x2.设切点为(m,2m3),则切线的斜率k=6m2,由点斜式得切线方程为y-2m3=6m2(x-m),代入点A(1,2)的坐标得2-2m3=6m2(1-m),即有2m3-3m2+1=0,即(m-1)2(2m+1)=0,解得m=1或m=-eq \f(1,2),即斜率为6或eq \f(3,2),则过点A的曲线C:y=f(x)的切线方程是y-2=6(x-1)或y-2=eq \f(3,2)(x-1),即6x-y-4=0或3x-2y+1=0.故选A、C.
12.(2020·江南十校联考)函数f(x)=(2x-1)ex的图象在点(0,f(0))处的切线的倾斜角为________.
解析:由f(x)=(2x-1)ex,得f′(x)=(2x+1)ex,
∴f′(0)=1,则切线的斜率k=1,
又切线的倾斜角θ∈[0,π),
因此切线的倾斜角θ=eq \f(π,4).
答案:eq \f(π,4)
13.曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离为________.
解析:设曲线上过点P(x0,y0)的切线平行于直线2x-y+3=0,即斜率是2,则 y′|x=x0=eq \f(2,2x0-1)=2,解得x0=1,所以y0=0,即点P(1,0).又点P到直线2x-y+3=0的距离为eq \f(|2-0+3|,\r(22+-12))=eq \r(5),所以曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是eq \r(5).
答案:eq \r(5)
14.已知函数f(x)=eq \f(1,x),g(x)=x2.若直线l与曲线f(x),g(x)都相切,则直线l的斜率为________.
解析:因为f(x)=eq \f(1,x),所以f′(x)=-eq \f(1,x2),设曲线f(x)与l切于点eq \b\lc\(\rc\)(\a\vs4\al\c1(x1,\f(1,x1))),则切线斜率k=-eq \f(1,x\\al(2,1)),故切线方程为y-eq \f(1,x1)=-eq \f(1,x\\al(2,1))(x-x1),即y=-eq \f(1,x\\al(2,1))x+eq \f(2,x1).与g(x)=x2联立,得x2+eq \f(1,x\\al(2,1))x-eq \f(2,x1)=0.因为直线l与曲线g(x)相切,所以eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x\\al(2,1))))2-4eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2,x1)))=0,解得x1=-eq \f(1,2),故斜率k=- eq \f(1,x\\al(2,1))=-4.
答案:-4
15.设函数f(x)=ax-eq \f(b,x),曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)证明曲线f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.
解:(1)方程7x-4y-12=0可化为y=eq \f(7,4)x-3,当x=2时,y=eq \f(1,2).
又因为f′(x)=a+eq \f(b,x2),
所以eq \b\lc\{\rc\ (\a\vs4\al\c1(2a-\f(b,2)=\f(1,2),,a+\f(b,4)=\f(7,4),))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=1,,b=3,))所以f(x)=x-eq \f(3,x).
(2)证明:设P(x0,y0)为曲线y=f(x)上任一点,由y′=1+eq \f(3,x2)知曲线在点P(x0,y0)处的切线方程为y-y0=eq \b\lc\(\rc\)(\a\vs4\al\c1(1+\f(3,x\\al(2,0))))(x-x0),即y-eq \b\lc\(\rc\)(\a\vs4\al\c1(x0-\f(3,x0)))=eq \b\lc\(\rc\)(\a\vs4\al\c1(1+\f(3,x\\al(2,0))))(x-x0).
令x=0,得y=-eq \f(6,x0),所以切线与直线x=0的交点坐标为eq \b\lc\(\rc\)(\a\vs4\al\c1(0,-\f(6,x0))).令y=x,得y=x=2x0,所以切线与直线y=x的交点坐标为(2x0,2x0).
所以曲线y=f(x)在点P(x0,y0)处的切线与直线x=0和y=x所围成的三角形的面积S=eq \f(1,2)eq \b\lc\|\rc\|(\a\vs4\al\c1(-\f(6,x0)))|2x0|=6.
故曲线y=f(x)上任一点处的切线与直线x=0和y=x所围成的三角形面积为定值,且此定值为6.
16.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.
(1)求f(x)的解析式;
(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.
解:(1)f′(x)=3ax2+2bx+c,
依题意eq \b\lc\{\rc\ (\a\vs4\al\c1(f′1=3a+2b+c=0,,f′-1=3a-2b+c=0))⇒eq \b\lc\{\rc\ (\a\vs4\al\c1(b=0,,3a+c=0.))
又f′(0)=-3,所以c=-3,所以a=1,
所以f(x)=x3-3x.
(2)设切点为(x0,xeq \\al(3,0)-3x0),
因为f′(x)=3x2-3,所以f′(x0)=3xeq \\al(2,0)-3,
所以切线方程为y-(xeq \\al(3,0)-3x0)=(3xeq \\al(2,0)-3)(x-x0),
又切线过点A(2,m),
所以m-(xeq \\al(3,0)-3x0)=(3xeq \\al(2,0)-3)(2-x0),
所以m=-2xeq \\al(3,0)+6xeq \\al(2,0)-6.
令g(x)=-2x3+6x2-6,
则g′(x)=-6x2+12x=-6x(x-2),
由g′(x)=0得x=0或x=2,g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2,
画出g(x)的草图知,当-60)为它们的公切线,联立eq \b\lc\{\rc\ (\a\vs4\al\c1(y=kx+b,,y=x2))可得x2-kx-b=0,由Δ=0,得k2+4b=0 ①.对y=ex+a求导可得y′=ex+a,令ex+a=k,可得x=ln k-a,∴切点坐标为(ln k-a,kln k-ak+b),代入y=ex+a可得k=kln k-ak+b ②.联立①②可得k2+4k+4ak-4kln k=0,化简得4+4a=4ln k-k.令g(k)=4ln k-k,则g′(k)=eq \f(4,k)-1,令g′(k)=0,得k=4,令g′(k)>0,得0
相关教案
这是一份新高考数学一轮复习讲练教案3.1 导数的概念及运算(含解析),共17页。
这是一份高考数学一轮复习教案 第2章_第10节_导数的概念及运算(含答案解析),共8页。
这是一份高中数学高考高考数学一轮复习总教案:3 1 导数的概念与运算,共4页。教案主要包含了变式训练1,变式训练2,变式训练3等内容,欢迎下载使用。

