新高考数学一轮复习讲与练第24讲 抛物线(讲)(2份打包,原卷版+解析版)
展开本讲为高考命题热点,分值22-27分,题型多变,选择题,填空题,解答题都会出现,
选择填空题常考圆锥曲线椭圆双曲线的离心率,几何关系等问题,大题题型多变,但多以最值,定值,范围,存在性问题,考察逻辑推理能力与运算求解能力.
考点一 抛物线的定义
平面内与一个定点F和一条定直线l(点F不在直线l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线. eq \x(当定点在定直线上时,轨迹为过定点F与定直线l垂直的一条直线.)
考点二 抛物线的标准方程和几何性质
焦点在x轴上时,方程的右端为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2.
[常用结论]
与抛物线焦点弦有关的几个常用结论
设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),α为弦AB的倾斜角.则
(1)x1x2=eq \f(p2,4),y1y2=-p2.
(2)|AF|=eq \f(p,1-cs α),|BF|=eq \f(p,1+cs α).
(3)弦长|AB|=x1+x2+p=eq \f(2p,sin2α).
(4)eq \f(1,|AF|)+eq \f(1,|BF|)=eq \f(2,p).
(5)以弦AB为直径的圆与准线相切.
高频考点一 抛物线的定义及其应用
【例1】(1)若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为( )
A.eq \f(1,2) B.1
C.eq \f(3,2) D.2
(2)设P是抛物线y2=4x上的一个动点,若B(3,2),则|PB|+|PF|的最小值为________.
【方法技巧】
[解题技法]
与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.
【跟踪训练】
1.若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为________.
2.(2022·襄阳测试)已知抛物线y=eq \f(1,2)x2的焦点为F,准线为l,M在l上,线段MF与抛物线交于N点,若|MN|=eq \r(2)|NF|,则|MF|=________.
高频考点二 抛物线的标准方程与几何性质
【例2】(1)(2019·全国卷Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆eq \f(x2,3p)+eq \f(y2,p)=1的一个焦点,则p=( )
A.2 B.3
C.4 D.8
(2)(2019·武汉调研)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=6,则此抛物线方程为( )
A.y2=9xB.y2=6x
C.y2=3xD.y2=eq \r(3)x
【方法技巧】1.求抛物线标准方程的方法
(1)定义法:若题目已给出抛物线的方程(含有未知数p),那么只需求出p即可.
(2)待定系数法:若题目未给出抛物线的方程,对于焦点在x轴上的抛物线的标准方程可统一设为y2=ax(a≠0),a的正负由题设来定;焦点在y轴上的抛物线的标准方程可设为x2=ay(a≠0),这样就减少了不必要的讨论.
2.抛物线性质的应用技巧
(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程.
(2)要结合图形分析,灵活运用平面图形的性质简化运算.
【变式训练】
1.(2020·福建厦门一模)若抛物线x2=ay的焦点到准线的距离为1,则a=( )
A.2 B.4
C.±2 D.±4
2.已知抛物线x2=2py(p>0)的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,若△FPM为边长是4的等边三角形,则此抛物线的方程为________.
高频考点三 直线与抛物线的位置关系
【例3】 (2019·全国卷Ⅰ)已知抛物线C:y2=3x的焦点为F,斜率为eq \f(3,2)的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若eq \(AP,\s\up7(―→))=3eq \(PB,\s\up7(―→)),求|AB|.
[解] 设直线l:y=eq \f(3,2)x+t,A(x1,y1),B(x2,y2).
(1)由题设得Feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,4),0)),故|AF|+|BF|=x1+x2+eq \f(3,2),又|AF|+|BF|=4,所以x1+x2=eq \f(5,2).
由eq \b\lc\{\rc\ (\a\vs4\al\c1(y=\f(3,2)x+t,,y2=3x))可得9x2+12(t-1)x+4t2=0,
则x1+x2=-eq \f(12t-1,9).
从而-eq \f(12t-1,9)=eq \f(5,2),得t=-eq \f(7,8).
所以l的方程为y=eq \f(3,2)x-eq \f(7,8).
(2)由eq \(AP,\s\up7(―→))=3eq \(PB,\s\up7(―→))可得y1=-3y2.
由eq \b\lc\{\rc\ (\a\vs4\al\c1(y=\f(3,2)x+t,,y2=3x))可得y2-2y+2t=0.
所以y1+y2=2.从而-3y2+y2=2,故y2=-1,y1=3.
代入C的方程得x1=3,x2=eq \f(1,3).故|AB|=eq \f(4\r(13),3).
【方法技巧】
[解题技法]
1.直线与抛物线交点问题的解题思路
(1)求交点问题,通常解直线方程与抛物线方程组成的方程组.
(2)与交点相关的问题通常借助根与系数的关系或用向量法解决.
2.解决抛物线的弦及弦中点问题的常用方法
(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用焦点弦公式,若不过焦点,则必须用一般弦长公式.
(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.
[提醒] 涉及弦的中点、斜率时,一般用“点差法”求解.
【变式训练】
1.已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=________.
2.设A,B为曲线C:y=eq \f(x2,2)上两点,A与B的横坐标之和为2.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,曲线C在点M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.
标准
y2=2px(p>0)
y2=-2px(p>0)
x2=2py(p>0)
x2=-2py(p>0)
方程
p的几何意义:焦点F到准线l的距离) eq \a\vs4\al(―→)
焦点到顶点以及顶点到准线的距离均为eq \a\vs4\al(\f(p,2).)
图形
顶点
O(0,0)
对称轴
x轴
y轴
焦点
Feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(p,2),0))
Feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(p,2),0))
Feq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(p,2)))
Feq \b\lc\(\rc\)(\a\vs4\al\c1(0,-\f(p,2)))
离心率
e=1
准线方程
x=-eq \f(p,2)
x=eq \f(p,2)
y=-eq \f(p,2)
y=eq \f(p,2)
范围
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
开口方向
向右
向左
向上
向下
焦半径(其中P(x0,y0))
|PF|=x0+eq \f(p,2)
|PF|=-x0+eq \f(p,2)
|PF|=y0+eq \f(p,2)
|PF|=-y0+eq \f(p,2)
新高考数学一轮复习讲与练第22讲 椭圆(讲)(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习讲与练第22讲 椭圆(讲)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第22讲椭圆讲原卷版doc、新高考数学一轮复习讲与练第22讲椭圆讲解析版doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
新高考数学一轮复习讲与练第10讲 复数(讲)(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习讲与练第10讲 复数(讲)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第10讲复数讲原卷版doc、新高考数学一轮复习讲与练第10讲复数讲解析版doc等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
新高考数学一轮复习讲与练第10讲 复数(练)(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习讲与练第10讲 复数(练)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第10讲复数练原卷版doc、新高考数学一轮复习讲与练第10讲复数练解析版doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。