![人教A版高中数学必修第二册7.1.2 复数的几何意义 【教学设计】第1页](http://img-preview.51jiaoxi.com/3/3/16108206/0-1724826348312/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教A版高中数学必修第二册7.1.2 复数的几何意义 【教学设计】第2页](http://img-preview.51jiaoxi.com/3/3/16108206/0-1724826348362/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教A版 (2019)必修 第二册第七章 复数7.1 复数的概念教案
展开
这是一份人教A版 (2019)必修 第二册第七章 复数7.1 复数的概念教案,共5页。教案主要包含了预习课本,引入新课,新知探究,典例分析,课堂小结,板书设计,作业等内容,欢迎下载使用。
复数的引入是中学阶段数系的又一次扩充,引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认知,也为进一步学习数学打下基础.通过本节课学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用.
课程目标:
1. 理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系;
2. 掌握实轴、虚轴、模等概念;
3. 掌握用向量的模来表示复数的模的方法.
数学学科素养
1.数学抽象:复平面及复数的几何意义的理解;
2.逻辑推理:根据平面与向量的关系推出复数与向量的一一对应及复数模公式;
3.数学运算:根据复数与复平面的点一一对应求参数和求复数的模;
4.数学建模:根据复数的代数形式,数形结合,多方位了解复数的几何意义,提高学生学习数学的兴趣.
重点:理解复数的几何意义,根据复数的代数形式描出其对应的点及向量.
难点:根据复数的代数形式描出其对应的点及向量.
教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
情景导入
提问:实数可以与数轴上的点一一对应,类比实数,复数能与什么一一对应呢?
要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
二、预习课本,引入新课
阅读课本70-72页,思考并完成以下问题
1、复平面是如何定义的,复数的模如何求出?
2、复数与复平面内的点及向量的关系如何?复数的模是实数还是虚数?
要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究
1.复平面
2.复数的几何意义
(1)复数z=a+bi(a,b∈R) 复平面内的点Za,b .
2复数z=a+bia,b∈R 平面向量eq \(OZ,\s\up17(―→)) .
[规律总结] 实轴、虚轴上的点与复数的对应关系
实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z=0+0i=0,表示的是实数.
3.复数的模
(1)定义:向量eq \(OZ,\s\up17(―→))的 模 r叫做复数z=a+bi(a,b∈R)的模.
(2)记法:复数z=a+bi的模记为|z|或|a+bi|.
(3)公式:|z|=|a+bi|=r=eq \r(a2+b2)(r≥0,r∈R).
四、典例分析、举一反三
题型一 复数与复平面内的对应关系
例1求实数a分别取何值时,复数z=eq \f(a2-a-6,a+3)+(a2-2a-15)i(a∈R)对应的点Z满足下列条件:
(1)在复平面的第二象限内.
(2)在复平面内的x轴上方.
【答案】(1) a<-3. (2)a>5或a<-3.
【解析】(1)点Z在复平面的第二象限内,则eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(a2-a-6,a+3)0,))解得a<-3.
(2)点Z在x轴上方,则eq \b\lc\{\rc\ (\a\vs4\al\c1(a2-2a-15>0,,a+3≠0,))即(a+3)(a-5)>0,解得a>5或a<-3.
解题技巧(利用复数与点的对应的解题步骤)
(1)复平面内复数与点的对应关系的实质是:复数的实部就是该点的横坐标,虚部就是该点的纵坐标.
(2)已知复数在复平面内对应的点满足的条件求参数取值范围时,可根据复数与点的对应关系,建立复数的实部与虚部满足的条件,通过解方程(组)或不等式(组)求解.
跟踪训练一
1、实数x取什么值时,复平面内表示复数z=x2+x-6+(x2-2x-15)i的点Z:
(1)位于第三象限; (2)位于直线x-y-3=0上
【答案】(1)-3
相关教案
这是一份高中数学人教A版 (2019)必修 第二册7.1 复数的概念教学设计及反思,共3页。
这是一份高中数学人教A版 (2019)必修 第二册7.1 复数的概念教学设计,共3页。
这是一份2020-2021学年7.1 复数的概念教学设计,共9页。教案主要包含了类题通法,巩固练习1,巩固练习2,巩固练习3,设计意图等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)