|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题18 圆锥曲线(椭圆、双曲线、抛物线)小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)
    立即下载
    加入资料篮
    专题18 圆锥曲线(椭圆、双曲线、抛物线)小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)01
    专题18 圆锥曲线(椭圆、双曲线、抛物线)小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)02
    专题18 圆锥曲线(椭圆、双曲线、抛物线)小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)03
    还剩104页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题18 圆锥曲线(椭圆、双曲线、抛物线)小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

    展开
    这是一份专题18 圆锥曲线(椭圆、双曲线、抛物线)小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用),共107页。试卷主要包含了的左焦点为,则等内容,欢迎下载使用。

    (椭圆、双曲线、抛物线)小题综合
    考点01 椭圆方程及其性质
    1.(2023·全国甲卷·高考真题)设为椭圆的两个焦点,点在上,若,则( )
    A.1B.2C.4D.5
    【答案】B
    【分析】方法一:根据焦点三角形面积公式求出的面积,即可解出;
    方法二:根据椭圆的定义以及勾股定理即可解出.
    【详解】方法一:因为,所以,
    从而,所以.
    故选:B.
    方法二:
    因为,所以,由椭圆方程可知,,
    所以,又,平方得:
    ,所以.
    故选:B.
    2.(2023·全国甲卷·高考真题)设O为坐标原点,为椭圆的两个焦点,点 P在C上,,则( )
    A.B.C.D.
    【答案】B
    【分析】方法一:根据焦点三角形面积公式求出的面积,即可得到点的坐标,从而得出的值;
    方法二:利用椭圆的定义以及余弦定理求出,再结合中线的向量公式以及数量积即可求出;
    方法三:利用椭圆的定义以及余弦定理求出,即可根据中线定理求出.
    【详解】方法一:设,所以,
    由,解得:,
    由椭圆方程可知,,
    所以,,解得:,
    即,因此.
    故选:B.
    方法二:因为①,,
    即②,联立①②,
    解得:,
    而,所以,
    即.
    故选:B.
    方法三:因为①,,
    即②,联立①②,解得:,
    由中线定理可知,,易知,解得:.
    故选:B.
    【点睛】本题根据求解的目标可以选择利用椭圆中的二级结论焦点三角形的面积公式快速解出,也可以常规利用定义结合余弦定理,以及向量的数量积解决中线问题的方式解决,还可以直接用中线定理解决,难度不是很大.
    3.(2022·全国新Ⅰ卷·高考真题)已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是 .
    【答案】13
    【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.
    【详解】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为, 直线的方程:,代入椭圆方程,整理化简得到:,
    判别式,
    ∴,
    ∴ , 得,
    ∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.
    故答案为:13.

    4.(2021·全国新Ⅰ卷·高考真题)已知,是椭圆:的两个焦点,点在上,则的最大值为( )
    A.13B.12C.9D.6
    【答案】C
    【分析】本题通过利用椭圆定义得到,借助基本不等式即可得到答案.
    【详解】由题,,则,
    所以(当且仅当时,等号成立).
    故选:C.
    【点睛】
    5.(2020·山东·高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( )
    A.3B.6C.8D.12
    【答案】B
    【分析】根据椭圆中的关系即可求解.
    【详解】椭圆的长轴长为10,焦距为8,
    所以,,可得,,
    所以,可得,
    所以该椭圆的短轴长,
    故选:B.
    6.(2019·全国·高考真题)已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为
    A.B.C.D.
    【答案】B
    【分析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.
    【详解】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得.
    所求椭圆方程为,故选B.
    法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B.
    【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.
    7.(2019·全国·高考真题)设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为 .
    【答案】
    【分析】根据椭圆的定义分别求出,设出的坐标,结合三角形面积可求出的坐标.
    【详解】由已知可得,
    又为上一点且在第一象限,为等腰三角形,
    .∴.
    设点的坐标为,则,
    又,解得,
    ,解得(舍去),
    的坐标为.
    【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.
    8.(2015·山东·高考真题)已知椭圆的中心在坐标原点,右焦点与圆的圆心重合,长轴长等于圆的直径,那么短轴长等于 .
    【答案】
    【分析】由于是圆,可得,通过圆心和半径计算,即得解
    【详解】由于是圆,
    即:圆
    其中圆心为,半径为4
    那么椭圆的长轴长为8,即,,,
    那么短轴长为
    故答案为:
    9.(2015·全国·高考真题)已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线的焦点
    重合,是C的准线与E的两个交点,则
    A.B.C.D.
    【答案】B
    【详解】试题分析:抛物线的焦点为所以椭圆的右焦点为即且椭圆的方程为抛物线准线为代入椭圆方程中得故选B.
    考点:1、抛物线的性质;2、椭圆的标准方程.
    10.(2015·广东·高考真题)已知椭圆()的左焦点为,则
    A.B.C.D.
    【答案】C
    【详解】试题分析:根据焦点坐标可知焦点在轴,所以,,,又因为,解得,故选C.
    考点:椭圆的基本性质
    11.(2015·全国·高考真题)一个圆经过椭圆的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为 .
    【答案】
    【详解】设圆心为(,0),则半径为,则,解得,故圆的方程为.
    考点:椭圆的几何性质;圆的标准方程
    考点02 双曲线方程及其性质
    1.(2024·天津·高考真题)双曲线的左、右焦点分别为是双曲线右支上一点,且直线的斜率为2.是面积为8的直角三角形,则双曲线的方程为( )
    A.B.C.D.
    【答案】C
    【分析】可利用三边斜率问题与正弦定理,转化出三边比例,设,由面积公式求出,由勾股定理得出,结合第一定义再求出.
    【详解】如下图:由题可知,点必落在第四象限,,设,
    ,由,求得,
    因为,所以,求得,即,
    ,由正弦定理可得:,
    则由得,
    由得,
    则,
    由双曲线第一定义可得:,,
    所以双曲线的方程为.
    故选:C
    2.(2023·全国甲卷·高考真题)已知双曲线的离心率为,C的一条渐近线与圆交于A,B两点,则( )
    A.B.C.D.
    【答案】D
    【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.
    【详解】由,则,
    解得,
    所以双曲线的一条渐近线为,
    则圆心到渐近线的距离,
    所以弦长.
    故选:D
    3.(2023·全国乙卷·高考真题)设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )
    A.B.C.D.
    【答案】D
    【分析】根据点差法分析可得,对于A、B、D:通过联立方程判断交点个数,逐项分析判断;对于C:结合双曲线的渐近线分析判断.
    【详解】设,则的中点,
    可得,
    因为在双曲线上,则,两式相减得,
    所以.
    对于选项A: 可得,则,
    联立方程,消去y得,
    此时,
    所以直线AB与双曲线没有交点,故A错误;
    对于选项B:可得,则,
    联立方程,消去y得,
    此时,
    所以直线AB与双曲线没有交点,故B错误;
    对于选项C:可得,则
    由双曲线方程可得,则为双曲线的渐近线,
    所以直线AB与双曲线没有交点,故C错误;
    对于选项D:,则,
    联立方程,消去y得,
    此时,故直线AB与双曲线有交两个交点,故D正确;
    故选:D.
    4.(2023·天津·高考真题)已知双曲线的左、右焦点分别为.过向一条渐近线作垂线,垂足为.若,直线的斜率为,则双曲线的方程为( )
    A.B.
    C.D.
    【答案】D
    【分析】先由点到直线的距离公式求出,设,由得到,.再由三角形的面积公式得到,从而得到,则可得到,解出,代入双曲线的方程即可得到答案.
    【详解】如图,

    因为,不妨设渐近线方程为,即,
    所以,
    所以.
    设,则,所以,所以.
    因为,所以,所以,所以,
    所以,
    因为,
    所以,
    所以,解得,
    所以双曲线的方程为
    故选:D
    5.(2022·天津·高考真题)已知抛物线分别是双曲线的左、右焦点,抛物线的准线过双曲线的左焦点,与双曲线的渐近线交于点A,若,则双曲线的标准方程为( )
    A.B.
    C.D.
    【答案】C
    【分析】由已知可得出的值,求出点的坐标,分析可得,由此可得出关于、、的方程组,解出这三个量的值,即可得出双曲线的标准方程.
    【详解】抛物线的准线方程为,则,则、,
    不妨设点为第二象限内的点,联立,可得,即点,
    因为且,则为等腰直角三角形,
    且,即,可得,
    所以,,解得,因此,双曲线的标准方程为.
    故选:C.
    6.(2021·北京·高考真题)若双曲线离心率为,过点,则该双曲线的方程为( )
    A.B.C.D.
    【答案】B
    【分析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.
    【详解】,则,,则双曲线的方程为,
    将点的坐标代入双曲线的方程可得,解得,故,
    因此,双曲线的方程为.
    故选:B
    7.(2021·全国甲卷·高考真题)点到双曲线的一条渐近线的距离为( )
    A.B.C.D.
    【答案】A
    【分析】首先确定渐近线方程,然后利用点到直线距离公式求得点到一条渐近线的距离即可.
    【详解】由题意可知,双曲线的渐近线方程为:,即,
    结合对称性,不妨考虑点到直线的距离:.
    故选:A.
    8.(2020·天津·高考真题)设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为( )
    A.B.C.D.
    【答案】D
    【分析】由抛物线的焦点可求得直线的方程为,即得直线的斜率为,再根据双曲线的渐近线的方程为,可得,即可求出,得到双曲线的方程.
    【详解】由题可知,抛物线的焦点为,所以直线的方程为,即直线的斜率为,
    又双曲线的渐近线的方程为,所以,,因为,解得.
    故选:.
    【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.
    9.(2020·浙江·高考真题)已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数y=图像上的点,则|OP|=( )
    A.B.C.D.
    【答案】D
    【分析】根据题意可知,点既在双曲线的一支上,又在函数的图象上,即可求出点的坐标,得到的值.
    【详解】因为,所以点在以为焦点,实轴长为,焦距为的双曲线的右支上,由可得,,即双曲线的右支方程为,而点还在函数的图象上,所以,
    由,解得,即.
    故选:D.
    【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.
    10.(2019·全国·高考真题)双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若,则△PFO的面积为
    A.B.C. D.
    【答案】A
    【分析】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.
    【详解】由.

    又P在C的一条渐近线上,不妨设为在上,
    ,故选A.
    【点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.
    11.(2018·全国·高考真题)已知双曲线的离心率为,则点到的渐近线的距离为
    A.B.C.D.
    【答案】D
    【详解】分析:由离心率计算出,得到渐近线方程,再由点到直线距离公式计算即可.
    详解:
    所以双曲线的渐近线方程为
    所以点(4,0)到渐近线的距离
    故选D
    点睛:本题考查双曲线的离心率,渐近线和点到直线距离公式,属于中档题.
    12.(2018·浙江·高考真题)双曲线的焦点坐标是
    A.,B.,
    C., D.,
    【答案】B
    【分析】根据双曲线方程确定焦点位置,再根据求焦点坐标.
    【详解】因为双曲线方程为,所以焦点坐标可设为,
    因为,所以焦点坐标为,选B.
    【点睛】由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.
    13.(2018·全国·高考真题)双曲线的离心率为,则其渐近线方程为
    A.B.C.D.
    【答案】A
    【详解】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.
    详解:
    因为渐近线方程为,所以渐近线方程为,选A.
    点睛:已知双曲线方程求渐近线方程:.
    14.(2018·全国·高考真题)已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=
    A.B.3C.D.4
    【答案】B
    【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离公式求得的值.
    详解:根据题意,可知其渐近线的斜率为,且右焦点为,
    从而得到,所以直线的倾斜角为或,
    根据双曲线的对称性,设其倾斜角为,
    可以得出直线的方程为,
    分别与两条渐近线和联立,
    求得,
    所以,故选B.
    点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.
    15.(2018·天津·高考真题)已知双曲线 的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且 则双曲线的方程为
    A.B.
    C.D.
    【答案】A
    【详解】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后利用离心率求解a的值即可确定双曲线方程.
    详解:设双曲线的右焦点坐标为(c>0),则,
    由可得:,
    不妨设:,双曲线的一条渐近线方程为,
    据此可得:,,
    则,则,
    双曲线的离心率:,
    据此可得:,则双曲线的方程为.
    本题选择A选项.
    点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.
    16.(2017·天津·高考真题)【陕西省西安市长安区第一中学上学期期末考】已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为( )
    A.B.C.D.
    【答案】D
    【详解】由题意结合双曲线的渐近线方程可得:
    ,解得:,
    双曲线方程为:.
    故选:D..
    【考点】 双曲线的标准方程
    【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于的方程,解方程组求出,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为,(2)与共渐近线的双曲线可设为,(3)等轴双曲线可设为等,均为待定系数法求标准方程.
    17.(2017·天津·高考真题)已知双曲线的左焦点为,离心率为.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为
    A.B.C.D.
    【答案】B
    【详解】由题意得 ,选B.
    【考点】 双曲线的标准方程
    【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于的方程,解方程组求出,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为,(2)与共渐近线的双曲线可设为,(3)等轴双曲线可设为等,均为待定系数法求标准方程.
    18.(2017·全国·高考真题)已知F是双曲线C:的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则的面积为
    A.B.
    C.D.
    【答案】D
    【详解】由得,所以,将代入,得,所以,又点A的坐标是(1,3),故△APF的面积为,选D.
    点睛:本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得,结合PF与x轴垂直,可得,最后由点A的坐标是(1,3),计算△APF的面积.
    19.(2016·天津·高考真题)已知双曲线(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为
    A.
    B.
    C.
    D.
    【答案】D
    【详解】试题分析:根据对称性,不妨设在第一象限,则,
    ∴,故双曲线的方程为,故选D.
    【考点】双曲线的渐近线
    【名师点睛】求双曲线的标准方程时注意:
    (1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.
    (2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.
    ①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).
    ②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).
    20.(2016·全国·高考真题)已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是
    A.(–1,3)B.(–1,)C.(0,3)D.(0,)
    【答案】A
    【详解】由题意知:双曲线的焦点在轴上,所以,解得,因为方程表示双曲线,所以,解得,所以的取值范围是,故选A.
    【考点】双曲线的性质
    【名师点睛】双曲线知识一般作为客观题出现,主要考查双曲线的几何性质,属于基础题.注意双曲线的焦距是2c而不是c,这一点易出错.
    21.(2016·天津·高考真题)已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为
    A.
    B.
    C.
    D.
    【答案】A
    【详解】试题分析:由题意,得又 ,所以所以双曲线的方程为,选A.
    【考点】双曲线
    【名师点睛】求双曲线的标准方程的关注点:
    (1)确定双曲线的标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.
    (2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.
    ①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).
    ②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).
    22.(2015·广东·高考真题)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为
    A.﹣=1B.﹣=1C.﹣=1D.﹣=1
    【答案】C
    【详解】试题分析:利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.
    解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),
    可得:,c=5,∴a=4,b==3,
    所求双曲线方程为:﹣=1.
    故选C.
    点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.
    23.(2015·重庆·高考真题)设双曲线的右焦点是F,左、右顶点分别是,过F作的垂线与双曲线交于B,C两点,若,则双曲线的渐近线的斜率为
    A.B.C.D.
    【答案】C
    【详解】试题分析:,,,,所以,根据,所以,代入后得,整理为,所以该双曲线渐近线的斜率是,故选C.
    考点:双曲线的性质
    24.(2015·天津·高考真题)已知双曲线的一个焦点为,且双曲线的渐近线与圆相切,则双曲线的方程为
    A.B.C.D.
    【答案】D
    【详解】试题分析:依题意有,解得,所以方程为.
    考点:双曲线的概念与性质.
    25.(2015·安徽·高考真题)下列双曲线中,渐近线方程为的是
    A.B.
    C.D.
    【答案】A
    【详解】由双曲线的渐近线的公式可行选项A的渐近线方程为,故选A.
    考点:本题主要考查双曲线的渐近线公式.
    26.(2015·福建·高考真题)若双曲线 的左、右焦点分别为,点在双曲线上,且,则 等于
    A.11B.9C.5D.3
    【答案】B
    【详解】由双曲线定义得,即,解得,故选B.
    考点:双曲线的标准方程和定义.
    二、填空题
    27.(2023·北京·高考真题)已知双曲线C的焦点为和,离心率为,则C的方程为 .
    【答案】
    【分析】根据给定条件,求出双曲线的实半轴、虚半轴长,再写出的方程作答.
    【详解】令双曲线的实半轴、虚半轴长分别为,显然双曲线的中心为原点,焦点在x轴上,其半焦距,
    由双曲线的离心率为,得,解得,则,
    所以双曲线的方程为.
    故答案为:
    28.(2022·全国甲卷·高考真题)记双曲线的离心率为e,写出满足条件“直线与C无公共点”的e的一个值 .
    【答案】2(满足皆可)
    【分析】根据题干信息,只需双曲线渐近线中即可求得满足要求的e值.
    【详解】解:,所以C的渐近线方程为,
    结合渐近线的特点,只需,即,
    可满足条件“直线与C无公共点”
    所以,
    又因为,所以,
    故答案为:2(满足皆可)
    29.(2022·全国甲卷·高考真题)若双曲线的渐近线与圆相切,则 .
    【答案】
    【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.
    【详解】解:双曲线的渐近线为,即,
    不妨取,圆,即,所以圆心为,半径,
    依题意圆心到渐近线的距离,
    解得或(舍去).
    故答案为:.
    30.(2022·北京·高考真题)已知双曲线的渐近线方程为,则 .
    【答案】
    【分析】首先可得,即可得到双曲线的标准方程,从而得到、,再跟渐近线方程得到方程,解得即可;
    【详解】解:对于双曲线,所以,即双曲线的标准方程为,
    则,,又双曲线的渐近线方程为,
    所以,即,解得;
    故答案为:
    31.(2021·全国乙卷·高考真题)已知双曲线的一条渐近线为,则C的焦距为 .
    【答案】4
    【分析】将渐近线方程化成斜截式,得出的关系,再结合双曲线中对应关系,联立求解,再由关系式求得,即可求解.
    【详解】由渐近线方程化简得,即,同时平方得,又双曲线中,故,解得(舍去),,故焦距.
    故答案为:4.
    【点睛】本题为基础题,考查由渐近线求解双曲线中参数,焦距,正确计算并联立关系式求解是关键.
    32.(2021·全国乙卷·高考真题)双曲线的右焦点到直线的距离为 .
    【答案】
    【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.
    【详解】由已知,,所以双曲线的右焦点为,
    所以右焦点到直线的距离为.
    故答案为:
    33.(2021·全国新Ⅱ卷·高考真题)若双曲线的离心率为2,则此双曲线的渐近线方程 .
    【答案】
    【分析】根据离心率得出,结合得出关系,即可求出双曲线的渐近线方程.
    【详解】解:由题可知,离心率,即,
    又,即,则,
    故此双曲线的渐近线方程为.
    故答案为:.
    34.(2020·北京·高考真题)已知双曲线,则C的右焦点的坐标为 ;C的焦点到其渐近线的距离是 .
    【答案】
    【分析】根据双曲线的标准方程可得出双曲线的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.
    【详解】在双曲线中,,,则,则双曲线的右焦点坐标为,
    双曲线的渐近线方程为,即,
    所以,双曲线的焦点到其渐近线的距离为.
    故答案为:;.
    【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.
    35.(2019·江苏·高考真题)在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的渐近线方程是 .
    【答案】.
    【分析】根据条件求,再代入双曲线的渐近线方程得出答案.
    【详解】由已知得,
    解得或,
    因为,所以.
    因为,
    所以双曲线的渐近线方程为.
    【点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的密切相关,事实上,标准方程中化1为0,即得渐近线方程.
    36.(2018·北京·高考真题)若双曲线的离心率为,则a= .
    【答案】4
    【详解】分析:根据离心率公式,及双曲线中的关系可联立方程组,进而求解参数的值.
    详解:在双曲线中,,且

    点睛:此题考查双曲线的基本知识,离心率是高考对于双曲线考查的一个重要考点,根据双曲线的离心率求双曲线的标准方程及双曲线的渐近线都是常见的出题形式,解题的关键在于利用公式,找到之间的关系.
    37.(2017·上海·高考真题)设双曲线的焦点为、,为该双曲线上的一点,若,则
    【答案】11
    【详解】由双曲线的方程,可得,
    根据双曲线的定义可知,
    又因为,所以.
    38.(2017·山东·高考真题)在平面直角坐标系中,双曲线的右支与焦点为的抛物线 交于两点,若,则该双曲线的渐近线方程为 .
    【答案】
    【详解】 ,
    因为 ,所以渐近线方程为.
    【名师点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.
    求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为的形式,当,,时为椭圆,当时为双曲线.
    2.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.
    39.(2017·全国·高考真题)双曲线的一条渐近线方程为,则 .
    【答案】
    【分析】依题意由双曲线方程可得双曲线的渐近线为,即可得到方程,解得即可.
    【详解】解:双曲线的一条渐近线方程为,
    又双曲线的渐近线为,可得,解得.
    故答案为:.
    40.(2017·江苏·高考真题)在平面直角坐标系xOy中,双曲线 的右准线与它的两条渐近线分别交于点
    P,Q,其焦点是F1 ,F2 ,则四边形F1 P F2 Q的面积是 .
    【答案】
    【详解】右准线方程为,渐近线方程为,设,则,,,则.
    点睛:(1)已知双曲线方程求渐近线:;(2)已知渐近线可设双曲线方程为;(3)双曲线的焦点到渐近线的距离为,垂足为对应准线与渐近线的交点.
    41.(2016·江苏·高考真题)在平面直角坐标系中,双曲线的焦距是 .
    【答案】
    【详解】试题分析:.故答案应填:
    【考点】双曲线性质
    【名师点睛】本题重点考查双曲线几何性质,而双曲线的几何性质与双曲线的标准方程息息相关,明确双曲线标准方程中各个量的对应关系是解题的关键,揭示焦点在x轴,实轴长为,虚轴长为,焦距为,渐近线方程为,离心率为.
    42.(2016·北京·高考真题)双曲线(,)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a= .
    【答案】2
    【详解】试题分析:因为四边形是正方形,所以,所以直线的方程为,此为双曲线的渐近线,因此,又由题意知,所以,.故答案为2.
    【考点】双曲线的性质
    【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.
    求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为的形式,当,,时为椭圆,当时为双曲线.
    43.(2016·浙江·高考真题)设双曲线x2–=1的左、右焦点分别为F1,F2.若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是 .
    【答案】.
    【详解】试题分析:由已知得,则,设是双曲线上任一点,由对称性不妨设在双曲线的右支上,则,,,为锐角,则,即,解得,所以,则.
    【考点】双曲线的几何性质.
    【思路点睛】先由对称性可设点在右支上,进而可得和,再由为锐角三角形可得,进而可得的不等式,解不等式可得的取值范围.
    44.(2016·北京·高考真题)已知双曲线的一条渐近线为,一个焦点为,则 ; .
    【答案】 1 2
    【详解】试题分析:依题意有,结合,解得.
    【考点】双曲线的基本概念
    【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.
    求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为的形式,当,,时为椭圆,当时为双曲线.
    45.(2015·江苏·高考真题)在平面直角坐标系中,为双曲线右支上的一个动点.若点到直线的距离大于c恒成立,则实数c的最大值为
    【答案】
    【详解】设,因为直线平行于渐近线,所以点到直线的距离恒大于直线与渐近线之间距离,因此c的最大值为直线与渐近线之间距离,为
    考点:双曲线渐近线,恒成立转化
    46.(2015·浙江·高考真题)双曲线的焦距是 ,渐近线方程是 .
    【答案】,.
    【详解】由题意得:,,,∴焦距为,
    渐近线方程为.
    考点:双曲线的标准方程及其性质
    47.(2015·全国·高考真题)已知是双曲线的右焦点,P是C左支上一点,,当周长最小时,该三角形的面积为 .
    【答案】
    【分析】根据题意,根据三点共线,求出直线的方程,联立双曲线方程,即可求得点坐标,则由即可容易求得.
    【详解】设双曲线的左焦点为,由双曲线定义知,,
    ∴△APF的周长为|PA|+|PF|+|AF|=|PA|++|AF|=|PA|++|AF|+,
    由于是定值,要使△APF的周长最小,则|PA|+最小,即P、A、共线,

    ∵,∴直线的方程为,即代入整理得,
    解得或 (舍),所以P点的纵坐标为,
    ∴=.
    故答案为:.
    【点睛】本题考查双曲线中三角形面积的求解,涉及双曲线的定义,属综合中档题.
    48.(2015·上海·高考真题)已知双曲线、的顶点重合,的方程为,若的一条渐近线的斜率是的一条渐近线的斜率的2倍,则的方程为 .
    【答案】
    【详解】因为的方程为,所以的一条渐近线的斜率,所以的一条渐近线的斜率,因为双曲线、的顶点重合,即焦点都在轴上,
    设的方程为,
    所以,所以的方程为.
    考点:双曲线的性质,直线的斜率.
    49.(2015·上海·高考真题)已知点和的横坐标相同,的纵坐标是的纵坐标的倍,和的轨迹分别为双曲线和.若的渐近线方程为,则的渐近线方程为 .
    【答案】
    【详解】由题意得::,设,则,所以,即的渐近线方程为
    考点:双曲线渐近线
    50.(2015·全国·高考真题)已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为 .
    【答案】
    【详解】依题意,设所求的双曲线的方程为.
    点为该双曲线上的点,
    .
    该双曲线的方程为:,即.
    故本题正确答案是.
    51.(2015·北京·高考真题)已知是双曲线()的一个焦点,则 .
    【答案】
    【详解】由题意知,,所以.
    考点:双曲线的焦点.
    考点03 抛物线方程及其性质
    1.(2023·北京·高考真题)已知抛物线的焦点为,点在上.若到直线的距离为5,则( )
    A.7B.6C.5D.4
    【答案】D
    【分析】利用抛物线的定义求解即可.
    【详解】因为抛物线的焦点,准线方程为,点在上,
    所以到准线的距离为,
    又到直线的距离为,
    所以,故.
    故选:D.
    2.(2022·全国乙卷·高考真题)设F为抛物线的焦点,点A在C上,点,若,则( )
    A.2B.C.3D.
    【答案】B
    【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点的横坐标,进而求得点坐标,即可得到答案.
    【详解】由题意得,,则,
    即点到准线的距离为2,所以点的横坐标为,
    不妨设点在轴上方,代入得,,
    所以.
    故选:B
    3.(2021·全国新Ⅱ卷·高考真题)抛物线的焦点到直线的距离为,则( )
    A.1B.2C.D.4
    【答案】B
    【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.
    【详解】抛物线的焦点坐标为,
    其到直线的距离:,
    解得:(舍去).
    故选:B.
    4.(2020·北京·高考真题)设抛物线的顶点为,焦点为,准线为.是抛物线上异于的一点,过作于,则线段的垂直平分线( ).
    A.经过点B.经过点
    C.平行于直线D.垂直于直线
    【答案】B
    【分析】依据题意不妨作出焦点在轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段的垂直平分线经过点,即求解.
    【详解】如图所示: .
    因为线段的垂直平分线上的点到的距离相等,又点在抛物线上,根据定义可知,,所以线段的垂直平分线经过点.
    故选:B.
    【点睛】本题主要考查抛物线的定义的应用,属于基础题.
    5.(2020·全国·高考真题)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=( )
    A.2B.3C.6D.9
    【答案】C
    【分析】利用抛物线的定义建立方程即可得到答案.
    【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.
    故选:C.
    【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.
    6.(2019·全国·高考真题)若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=
    A.2B.3
    C.4D.8
    【答案】D
    【分析】利用抛物线与椭圆有共同的焦点即可列出关于的方程,即可解出,或者利用检验排除的方法,如时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,故选D.
    【详解】因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选D.
    【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.
    7.(2017·全国·高考真题)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为
    A.16B.14C.12D.10
    【答案】A
    【详解】设,直线的方程为,联立方程,得,∴,同理直线与抛物线的交点满足,由抛物线定义可知
    ,当且仅当(或)时,取等号.
    点睛:对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为,则,则,所以
    .
    8.(2016·全国·高考真题)设为抛物线的焦点,曲线与交于点,轴,则
    A.B.C.D.
    【答案】D
    【详解】试题分析:由抛物线的性质可得,故选D.
    考点:1、直线与抛物线;2、抛物线的几何性质;3、反比例函数.
    9.(2016·四川·高考真题)抛物线y2=4x的焦点坐标是
    A.(0,2)B.(0,1)C.(2,0)D.(1,0)
    【答案】D
    【详解】试题分析:的焦点坐标为,故选D.
    【考点】抛物线的性质
    【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单几何性质是我们要重点掌握的内容,一定要熟记掌握.
    10.(2015·浙江·高考真题)如图,设抛物线的焦点为 ,不经过焦点的直线上有三个不同的点, ,,其中点 ,在抛物线上,点 在轴上,则 与的面积之比是
    A.B.C.D.
    【答案】A
    【详解】,故选A.
    考点:抛物线的标准方程及其性质
    11.(2015·全国·高考真题)已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线的焦点
    重合,是C的准线与E的两个交点,则
    A.B.C.D.
    【答案】B
    【详解】试题分析:抛物线的焦点为所以椭圆的右焦点为即且椭圆的方程为抛物线准线为代入椭圆方程中得故选B.
    考点:1、抛物线的性质;2、椭圆的标准方程.
    12.(2015·陕西·高考真题)已知抛物线的准线经过点,则抛物线焦点坐标为
    A.B.C.D.
    【答案】B
    【详解】由抛物线得准线,因为准线经过点,所以,
    所以抛物线焦点坐标为,故答案选
    考点:抛物线方程和性质.
    二、多选题
    13.(2024·全国新Ⅱ卷·高考真题)抛物线C:的准线为l,P为C上的动点,过P作的一条切线,Q为切点,过P作l的垂线,垂足为B,则( )
    A.l与相切
    B.当P,A,B三点共线时,
    C.当时,
    D.满足的点有且仅有2个
    【答案】ABD
    【分析】A选项,抛物线准线为,根据圆心到准线的距离来判断;B选项,三点共线时,先求出的坐标,进而得出切线长;C选项,根据先算出的坐标,然后验证是否成立;D选项,根据抛物线的定义,,于是问题转化成的点的存在性问题,此时考察的中垂线和抛物线的交点个数即可,亦可直接设点坐标进行求解.
    【详解】A选项,抛物线的准线为,
    的圆心到直线的距离显然是,等于圆的半径,
    故准线和相切,A选项正确;
    B选项,三点共线时,即,则的纵坐标,
    由,得到,故,
    此时切线长,B选项正确;
    C选项,当时,,此时,故或,
    当时,,,,
    不满足;
    当时,,,,
    不满足;
    于是不成立,C选项错误;
    D选项,方法一:利用抛物线定义转化
    根据抛物线的定义,,这里,
    于是时点的存在性问题转化成时点的存在性问题,
    ,中点,中垂线的斜率为,
    于是的中垂线方程为:,与抛物线联立可得,
    ,即的中垂线和抛物线有两个交点,
    即存在两个点,使得,D选项正确.
    方法二:(设点直接求解)
    设,由可得,又,又,
    根据两点间的距离公式,,整理得,
    ,则关于的方程有两个解,
    即存在两个这样的点,D选项正确.
    故选:ABD
    14.(2023·全国新Ⅱ卷·高考真题)设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则( ).
    A.B.
    C.以MN为直径的圆与l相切D.为等腰三角形
    【答案】AC
    【分析】先求得焦点坐标,从而求得,根据弦长公式求得,根据圆与等腰三角形的知识确定正确答案.
    【详解】A选项:直线过点,所以抛物线的焦点,
    所以,则A选项正确,且抛物线的方程为.
    B选项:设,
    由消去并化简得,
    解得,所以,B选项错误.
    C选项:设的中点为,到直线的距离分别为,
    因为,
    即到直线的距离等于的一半,所以以为直径的圆与直线相切,C选项正确.
    D选项:直线,即,
    到直线的距离为,
    所以三角形的面积为,
    由上述分析可知,
    所以,
    所以三角形不是等腰三角形,D选项错误.
    故选:AC.

    15.(2022·全国新Ⅱ卷·高考真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
    A.直线的斜率为B.
    C.D.
    【答案】ACD
    【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.
    【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
    代入抛物线可得,则,则直线的斜率为,A正确;
    对于B,由斜率为可得直线的方程为,联立抛物线方程得,
    设,则,则,代入抛物线得,解得,则,
    则,B错误;
    对于C,由抛物线定义知:,C正确;
    对于D,,则为钝角,
    又,则为钝角,
    又,则,D正确.
    故选:ACD.
    16.(2022·全国新Ⅰ卷·高考真题)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )
    A.C的准线为B.直线AB与C相切
    C.D.
    【答案】BCD
    【分析】求出抛物线方程可判断A,联立AB与抛物线的方程求交点可判断B,利用距离公式及弦长公式可判断C、D.
    【详解】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;
    ,所以直线的方程为,
    联立,可得,解得,故B正确;
    设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,
    所以,直线的斜率存在,设其方程为,,
    联立,得,
    所以,所以或,,
    又,,
    所以,故C正确;
    因为,,
    所以,而,故D正确.
    故选:BCD
    三、填空题
    17.(2024·北京·高考真题)抛物线的焦点坐标为 .
    【答案】
    【分析】形如的抛物线的焦点坐标为,由此即可得解.
    【详解】由题意抛物线的标准方程为,所以其焦点坐标为.
    故答案为:.
    18.(2024·上海·高考真题)已知抛物线上有一点到准线的距离为9,那么点到轴的距离为 .
    【答案】
    【分析】根据抛物线的定义知,将其再代入抛物线方程即可.
    【详解】由知抛物线的准线方程为,设点,由题意得,解得,
    代入抛物线方程,得,解得,
    则点到轴的距离为.
    故答案为:.
    19.(2024·天津·高考真题)圆的圆心与抛物线的焦点重合,为两曲线的交点,则原点到直线的距离为 .
    【答案】/
    【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求及的方程,从而可求原点到直线的距离.
    【详解】圆的圆心为,故即,
    由可得,故或(舍),
    故,故直线即或,
    故原点到直线的距离为,
    故答案为:
    20.(2023·全国乙卷·高考真题)已知点在抛物线C:上,则A到C的准线的距离为 .
    【答案】
    【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为,最后利用点的坐标和准线方程计算点到的准线的距离即可.
    【详解】由题意可得:,则,抛物线的方程为,
    准线方程为,点到的准线的距离为.
    故答案为:.
    21.(2021·北京·高考真题)已知抛物线的焦点为,点在抛物线上,垂直轴于点.若,则点的横坐标为 ; 的面积为 .
    【答案】 5
    【分析】根据焦半径公式可求的横坐标,求出纵坐标后可求.
    【详解】因为抛物线的方程为,故且.
    因为,,解得,故,
    所以,
    故答案为:5;.
    22.(2021·全国·高考真题)已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为 .
    【答案】
    【分析】先用坐标表示,再根据向量垂直坐标表示列方程,解得,即得结果.
    【详解】抛物线: ()的焦点,
    ∵P为上一点,与轴垂直,
    所以P的横坐标为,代入抛物线方程求得P的纵坐标为,
    不妨设,
    因为Q为轴上一点,且,所以Q在F的右侧,
    又,
    因为,所以,

    所以的准线方程为
    故答案为:.
    【点睛】利用向量数量积处理垂直关系是本题关键.
    23.(2019·北京·高考真题)设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为 .
    【答案】(x-1)2+y2=4.
    【分析】由抛物线方程可得焦点坐标,即圆心,焦点到准线距离即半径,进而求得结果.
    【详解】抛物线y2=4x中,2p=4,p=2,
    焦点F(1,0),准线l的方程为x=-1,
    以F为圆心,
    且与l相切的圆的方程为 (x-1)2+y2=22,即为(x-1)2+y2=4.
    【点睛】本题主要考查抛物线的焦点坐标,抛物线的准线方程,直线与圆相切的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.
    24.(2018·北京·高考真题)已知直线l过点(1,0)且垂直于轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为 .
    【答案】
    【详解】分析:根据题干描述画出相应图形,分析可得抛物线经过点,将点坐标代入可求参数的值,进而可求焦点坐标.
    详细:由题意可得,点在抛物线上,将代入中,
    解得:,,
    由抛物线方程可得:,
    焦点坐标为.
    考点04 椭圆的离心率及其应用
    1.(2023·全国新Ⅰ卷·高考真题)设椭圆的离心率分别为.若,则( )
    A.B.C.D.
    【答案】A
    【分析】根据给定的椭圆方程,结合离心率的意义列式计算作答.
    【详解】由,得,因此,而,所以.
    故选:A
    2.(2022·全国·甲卷高考真题)已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为( )
    A.B.C.D.
    【答案】B
    【分析】根据离心率及,解得关于的等量关系式,即可得解.
    【详解】解:因为离心率,解得,,
    分别为C的左右顶点,则,
    B为上顶点,所以.
    所以,因为
    所以,将代入,解得,
    故椭圆的方程为.
    故选:B.
    3.(2022·全国甲卷·高考真题)椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为( )
    A.B.C.D.
    【答案】A
    【分析】设,则,根据斜率公式结合题意可得,再根据,将用表示,整理,再结合离心率公式即可得解.
    【详解】[方法一]:设而不求
    设,则
    则由得:,
    由,得,
    所以,即,
    所以椭圆的离心率,故选A.
    [方法二]:第三定义
    设右端点为B,连接PB,由椭圆的对称性知:
    故,
    由椭圆第三定义得:,

    所以椭圆的离心率,故选A.
    4.(2021·全国乙卷·高考真题)设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )
    A.B.C.D.
    【答案】C
    【分析】设,由,根据两点间的距离公式表示出 ,分类讨论求出的最大值,再构建齐次不等式,解出即可.
    【详解】设,由,因为 ,,所以

    因为,当,即 时,,即 ,符合题意,由可得,即 ;
    当,即时, ,即,化简得, ,显然该不等式不成立.
    故选:C.
    【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.
    5.(2021·浙江·高考真题)已知椭圆,焦点,,若过的直线和圆相切,与椭圆在第一象限交于点P,且轴,则该直线的斜率是 ,椭圆的离心率是 .
    【答案】
    【分析】不妨假设,根据图形可知,,再根据同角三角函数基本关系即可求出;再根据椭圆的定义求出,即可求得离心率.
    【详解】
    如图所示:不妨假设,设切点为,

    所以, 由,所以,,
    于是,即,所以.
    故答案为:;.
    6.(2019·北京·高考真题)已知椭圆(a>b>0)的离心率为,则
    A.a2=2b2B.3a2=4b2C.a=2bD.3a=4b
    【答案】B
    【分析】由题意利用离心率的定义和的关系可得满足题意的等式.
    【详解】椭圆的离心率,化简得,
    故选B.
    【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.
    7.(2018·北京·高考真题)已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为 ;双曲线N的离心率为 .
    【答案】 2
    【分析】方法一:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,解得椭圆M的离心率.
    【详解】[方法一]:【最优解】数形结合+定义法
    由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为
    双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为,

    故答案为:;.
    [方法二]: 数形结合+齐次式求离心率
    设双曲线的一条渐近线与椭圆在第一象限的交点为,椭圆的右焦点为.由题可知,为正六边形相邻的两个顶点,所以(O为坐标原点).
    所以.因此双曲线的离心率.
    由与联立解得.
    因为是正三角形,所以,因此,可得.
    将代入上式,化简、整理得,即,解得,(舍去).
    所以,椭圆的离心率为,双曲线的离心率为2.
    故答案为:;.
    [方法三]:数形结合+椭圆定义+解焦点三角形
    由条件知双曲线N在第一、三象限的渐近线方程为,于是双曲线N的离心率为.
    设双曲线的一条渐近线与椭圆在第一象限的交点为A,椭圆的左、右焦点分别为.在中,.
    由正弦定理得.
    于是.
    即椭圆的离心率.
    故答案为:;.
    【整体点评】方法一:直接根据椭圆的定义以及正六边形性质求解,是该题的最优解;
    方法二:利用正六边形性质求出双曲线的离心率,根据平面几何条件创建齐次式求出椭圆的离心率,运算较为复杂;
    方法三:利用正六边形性质求出双曲线的离心率,再根据通过解焦点三角形求椭圆离心率.
    8.(2018·全国·高考真题)已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为
    A.B.C.D.
    【答案】D
    【详解】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.
    详解:在中,
    设,则,
    又由椭圆定义可知
    则离心率,
    故选D.
    点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.
    9.(2018·全国·高考真题)已知椭圆:的一个焦点为,则的离心率为
    A.B.C.D.
    【答案】C
    【详解】分析:首先根据题中所给的条件椭圆的一个焦点为,从而求得,再根据题中所给的方程中系数,可以得到,利用椭圆中对应的关系,求得,最后利用椭圆离心率的公式求得结果.
    详解:根据题意,可知,因为,
    所以,即,
    所以椭圆的离心率为,故选C.
    点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中的关系求得结果.
    10.(2018·全国·高考真题)已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为
    A.B.C.D.
    【答案】D
    【分析】先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.
    【详解】因为为等腰三角形,,所以PF2=F1F2=2c,
    由斜率为得,,
    由正弦定理得,
    所以,
    故选:D.
    11.(2017·浙江·高考真题)椭圆的离心率是( )
    A.B.C.D.
    【答案】B
    【解析】由题可知,,,求出,即可求出椭圆的离心率.
    【详解】因为椭圆中,,
    所以,
    得,
    故选:B.
    【点睛】本题考查椭圆的离心率的求法,以及灵活运用椭圆的简单性质化简求值.
    12.(2017·全国·高考真题)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为
    A.B.
    C.D.
    【答案】A
    【详解】以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,
    直线与圆相切,所以圆心到直线的距离等于半径,即,
    整理可得,即即,
    从而,则椭圆的离心率,
    故选A.
    【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.
    13.(2016·浙江·高考真题)已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则
    A.m>n且e1e2>1B.m>n且e1e2<1
    C.m<n且e1e2>1D.m<n且e1e2<1
    【答案】A
    【详解】试题分析:由题意知,即,由于m>1,n>0,可得m>n,
    又= ,故.故选A.
    【考点】椭圆的简单几何性质,双曲线的简单几何性质.
    【易错点睛】计算椭圆的焦点时,要注意;计算双曲线的焦点时,要注意.否则很容易出现错误.
    14.(2016·全国·高考真题)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为
    A.B.C.D.
    【答案】A
    【详解】试题分析:如图取与重合,则由直线同理由,故选A.
    考点:1、椭圆及其性质;2、直线与椭圆.
    【方法点晴】本题考查椭圆及其性质、直线与椭圆,涉及特殊与一般思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.
    15.(2016·全国·高考真题)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为 ( )
    A.B.
    C.D.
    【答案】B
    【详解】试题分析:不妨设直线,即椭圆中心到的距离
    ,故选B.
    考点:1、直线与椭圆;2、椭圆的几何性质.
    【方法点晴】本题考查直线与椭圆、椭圆的几何性质,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 不妨设直线,即椭圆中心到的距离,利用方程思想和数形结合思想建立方程是本题的关键节点.
    16.(2016·江苏·高考真题)如图,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于两点,且,则该椭圆的离心率是 .
    【答案】
    【详解】由题意得,故,,
    又,所以
    【考点】椭圆离心率
    【名师点睛】椭圆离心率的考查,一般分两个层次,一是由离心率的定义,只需分别求出,这注重考查椭圆标准方程中量的含义,二是整体考查,求的比值,这注重于列式,即需根据条件列出关于的一个等量关系,通过解方程得到离心率的值.
    17.(2015·福建·高考真题)已知椭圆的右焦点为.短轴的一个端点为,直线交椭圆于两点.若,点到直线的距离不小于,则椭圆的离心率的取值范围是
    A.B.C.D.
    【答案】A
    【详解】试题分析:设是椭圆的左焦点,由于直线过原点,因此两点关于原点对称,从而是平行四边形,所以,即,,设,则,所以,,即,又,所以,.故选A.
    考点:椭圆的几何性质.
    【名师点睛】本题考查椭圆的离心率的范围,因此要求得关系或范围,解题的关键是利用对称性得出就是,从而得,于是只有由点到直线的距离得出的范围,就得出的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.
    18.(2015·浙江·高考真题)椭圆()的右焦点关于直线的对称点在椭圆上,则椭圆的离心率是 .
    【答案】
    【分析】设,利用对称知识,结合椭圆方程得出椭圆中a,b,c,之间的关系,再由,离心率为,及可求出离心率.
    【详解】设关于直线的对称点为,
    则有线段的中点坐标为,
    且直线与直线垂直,
    所以有,解得,
    所以在椭圆上,
    即有,又,可得
    ,可得,
    所以,
    即,因为,
    所以,解得.
    考点05 双曲线的离心率及其应用
    1.(2024·全国甲卷·高考真题)已知双曲线的两个焦点分别为,点在该双曲线上,则该双曲线的离心率为( )
    A.4B.3C.2D.
    【答案】C
    【分析】由焦点坐标可得焦距,结合双曲线定义计算可得,即可得离心率.
    【详解】由题意,设、、,
    则,,,
    则,则.
    故选:C.
    2.(2022·全国乙卷·高考真题)(多选)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )
    A.B.C.D.
    【答案】AC
    【分析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,利用正弦定理结合三角变换、双曲线的定义得到或,即可得解,注意就在双支上还是在单支上分类讨论.
    【详解】[方法一]:几何法,双曲线定义的应用
    情况一
    M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,
    所以,因为,所以在双曲线的左支,
    ,, ,设,由即,则,
    选A
    情况二
    若M、N在双曲线的两支,因为,所以在双曲线的右支,
    所以,, ,设,
    由,即,则,
    所以,即,
    所以双曲线的离心率
    选C
    [方法二]:答案回代法
    特值双曲线

    过且与圆相切的一条直线为,
    两交点都在左支,,

    则,
    特值双曲线,
    过且与圆相切的一条直线为,
    两交点在左右两支,在右支,,

    则,
    [方法三]:
    依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,
    若分别在左右支,
    因为,且,所以在双曲线的右支,
    又,,,
    设,,
    在中,有,
    故即,
    所以,
    而,,,故,
    代入整理得到,即,
    所以双曲线的离心率
    若均在左支上,
    同理有,其中为钝角,故,
    故即,
    代入,,,整理得到:,
    故,故,
    故选:AC.
    3.(2021·全国甲卷·高考真题)已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为( )
    A.B.C.D.
    【答案】A
    【分析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.
    【详解】因为,由双曲线的定义可得,
    所以,;
    因为,由余弦定理可得,
    整理可得,所以,即.
    故选:A
    【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.
    4.(2021·天津·高考真题)已知双曲线的右焦点与抛物线的焦点重合,抛物线的准线交双曲线于A,B两点,交双曲线的渐近线于C、D两点,若.则双曲线的离心率为( )
    A.B.C.2D.3
    【答案】A
    【分析】设公共焦点为,进而可得准线为,代入双曲线及渐近线方程,结合线段长度比值可得,再由双曲线离心率公式即可得解.
    【详解】设双曲线与抛物线的公共焦点为,
    则抛物线的准线为,
    令,则,解得,所以,
    又因为双曲线的渐近线方程为,所以,
    所以,即,所以,
    所以双曲线的离心率.
    故选:A.
    5.(2021·北京·高考真题)若双曲线离心率为,过点,则该双曲线的方程为( )
    A.B.C.D.
    【答案】B
    【分析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.
    【详解】,则,,则双曲线的方程为,
    将点的坐标代入双曲线的方程可得,解得,故,
    因此,双曲线的方程为.
    故选:B
    6.(2019·北京·高考真题)已知双曲线(a>0)的离心率是 则a=
    A.B.4C.2D.
    【答案】D
    【分析】本题根据根据双曲线的离心率的定义,列关于a的方程求解.
    【详解】 ∵双曲线的离心率 , ,
    ∴ ,
    解得 ,
    故选D.
    【点睛】本题主要考查双曲线的离心率的定义,双曲线中a,b,c的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.
    7.(2019·天津·高考真题)已知抛物线的焦点为,准线为.若与双曲线的两条渐近线分别交于点A和点B,且(为原点),则双曲线的离心率为
    A.B.C.2D.
    【答案】D
    【分析】只需把用表示出来,即可根据双曲线离心率的定义求得离心率.
    【详解】抛物线的准线的方程为,
    双曲线的渐近线方程为,
    则有
    ∴,,,
    ∴.
    故选D.
    【点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB的长度.
    8.(2019·全国·高考真题)设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为
    A.B.
    C.2D.
    【答案】A
    【分析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.
    【详解】设与轴交于点,由对称性可知轴,
    又,为以为直径的圆的半径,
    为圆心.
    ,又点在圆上,
    ,即.
    ,故选A.
    【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.
    9.(2019·全国·高考真题)双曲线C:的 一条渐近线的倾斜角为130°,则C的离心率为
    A.2sin40°B.2cs40°C.D.
    【答案】D
    【分析】由双曲线渐近线定义可得,再利用求双曲线的离心率.
    【详解】由已知可得,
    ,故选D.
    【点睛】对于双曲线:,有;对于椭圆,有,防止记混.
    10.(2018·全国·高考真题)设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为
    A.B.C.D.
    【答案】B
    【详解】分析:由双曲线性质得到,然后在和在中利用余弦定理可得.
    详解:由题可知
    在中,
    在中,
    故选B.
    点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题.
    11.(2018·天津·高考真题)已知双曲线 的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且 则双曲线的方程为
    A.B.
    C.D.
    【答案】A
    【详解】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后利用离心率求解a的值即可确定双曲线方程.
    详解:设双曲线的右焦点坐标为(c>0),则,
    由可得:,
    不妨设:,双曲线的一条渐近线方程为,
    据此可得:,,
    则,则,
    双曲线的离心率:,
    据此可得:,则双曲线的方程为.
    本题选择A选项.
    点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.
    12.(2017·天津·高考真题)已知双曲线的左焦点为,离心率为.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为
    A.B.C.D.
    【答案】B
    【详解】由题意得 ,选B.
    【考点】 双曲线的标准方程
    【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于的方程,解方程组求出,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为,(2)与共渐近线的双曲线可设为,(3)等轴双曲线可设为等,均为待定系数法求标准方程.
    13.(2017·全国·高考真题)若双曲线(,)的一条渐近线被圆所截
    得的弦长为2,则的离心率为
    A.2B.C.D.
    【答案】A
    【详解】由几何关系可得,双曲线的渐近线方程为,圆心到渐近线距离为,则点到直线的距离为,
    即,整理可得,双曲线的离心率.故选A.
    点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).
    14.(2017·全国·高考真题)若,则双曲线的离心率的取值范围是
    A.B.C.D.
    【答案】C
    【详解】, ,
    , , ,则,选C.
    15.(2016·浙江·高考真题)已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则
    A.m>n且e1e2>1B.m>n且e1e2<1C.m<n且e1e2>1D.m<n且e1e2<1
    【答案】A
    【详解】试题分析:由题意知,即,由于m>1,n>0,可得m>n,
    又= ,故.故选A.
    【考点】椭圆的简单几何性质,双曲线的简单几何性质.
    【易错点睛】计算椭圆的焦点时,要注意;计算双曲线的焦点时,要注意.否则很容易出现错误.
    16.(2016·全国·高考真题)(2016新课标全国Ⅱ理科)已知F1,F2是双曲线E:的左,右焦点,点M在E上,M F1与轴垂直,sin ,则E的离心率为
    A.B.
    C.D.2
    【答案】A
    【详解】试题分析:由已知可得,故选A.
    考点:1、双曲线及其方程;2、双曲线的离心率.
    【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.
    17.(2015·广东·高考真题)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为
    A.﹣=1B.﹣=1C.﹣=1D.﹣=1
    【答案】C
    【详解】试题分析:利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.
    解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),
    可得:,c=5,∴a=4,b==3,
    所求双曲线方程为:﹣=1.
    故选C.
    点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.
    18.(2015·湖南·高考真题)若双曲线的一条渐近线经过点,则此双曲线的离心率为
    A.B.C.D.
    【答案】D
    【详解】因为双曲线的一条渐近线经过点(3,-4),
    故选D.
    考点:双曲线的简单性质
    【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线共渐近线的可设为;(2)若渐近线方程为,则可设为;(3) 双曲线的焦点到渐近线的距离等于虚半轴长;(4) 的一条渐近线的斜率为.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.
    19.(2015·湖北·高考真题)将离心率为的双曲线的实半轴长和虚半轴长同时增加个单位长度,得到离心率为的双曲线,则
    A.对任意的,
    B.当时,;当时,
    C.对任意的,
    D.当时,;当时,
    【答案】D
    【详解】依题意,,,
    因为,由于,,,
    所以当时,,,,,所以;
    当时,,,而,所以,所以.
    所以当时,;当时,.
    考点:双曲线的性质,离心率.
    20.(2015·全国·高考真题)已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为
    A.B.C.D.
    【答案】D
    【详解】设双曲线方程为,如图所示,,,过点作轴,垂足为,在中,,,故点的坐标为,代入双曲线方程得,即,所以,故选D.
    考点:双曲线的标准方程和简单几何性质.
    21.(2015·山东·高考真题)已知是双曲线(,)的左焦点,点在双曲线上,直线与轴垂直,且,那么双曲线的离心率是( )
    A.B.C.2D.3
    【答案】A
    【分析】易得的坐标为,设点坐标为,求得,由可得,
    然后由a,b,c的关系求得,最后求得离心率即可.
    【详解】的坐标为,设点坐标为,
    易得,解得,
    因为直线与轴垂直,且,
    所以可得,则,即,
    所以,离心率为.
    故选:A.
    二、填空题
    22.(2024·全国新Ⅰ卷·高考真题)设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为 .
    【答案】
    【分析】由题意画出双曲线大致图象,求出,结合双曲线第一定义求出,即可得到的值,从而求出离心率.
    【详解】由题可知三点横坐标相等,设在第一象限,将代入
    得,即,故,,
    又,得,解得,代入得,
    故,即,所以.
    故答案为:
    23.(2023·全国新Ⅰ卷·高考真题)已知双曲线的左、右焦点分别为.点在上,点在轴上,,则的离心率为 .
    【答案】/
    【分析】方法一:利用双曲线的定义与向量数积的几何意义得到关于的表达式,从而利用勾股定理求得,进而利用余弦定理得到的齐次方程,从而得解.
    方法二:依题意设出各点坐标,从而由向量坐标运算求得,,将点代入双曲线得到关于的齐次方程,从而得解;
    【详解】方法一:
    依题意,设,则,
    在中,,则,故或(舍去),
    所以,,则,
    故,
    所以在中,,整理得,
    故.
    方法二:
    依题意,得,令,
    因为,所以,则,
    又,所以,则,
    又点在上,则,整理得,则,
    所以,即,
    整理得,则,解得或,
    又,所以或(舍去),故.
    故答案为:.
    【点睛】关键点睛:双曲线过焦点的三角形的解决关键是充分利用双曲线的定义,结合勾股定理与余弦定理得到关于的齐次方程,从而得解.
    24.(2023·北京·高考真题)已知双曲线C的焦点为和,离心率为,则C的方程为 .
    【答案】
    【分析】根据给定条件,求出双曲线的实半轴、虚半轴长,再写出的方程作答.
    【详解】令双曲线的实半轴、虚半轴长分别为,显然双曲线的中心为原点,焦点在x轴上,其半焦距,
    由双曲线的离心率为,得,解得,则,
    所以双曲线的方程为.
    故答案为:
    25.(2022·全国甲卷·高考真题)记双曲线的离心率为e,写出满足条件“直线与C无公共点”的e的一个值 .
    【答案】2(满足皆可)
    【分析】根据题干信息,只需双曲线渐近线中即可求得满足要求的e值.
    【详解】解:,所以C的渐近线方程为,
    结合渐近线的特点,只需,即,
    可满足条件“直线与C无公共点”
    所以,
    又因为,所以,
    故答案为:2(满足皆可)
    26.(2022·浙江·高考真题)已知双曲线的左焦点为F,过F且斜率为的直线交双曲线于点,交双曲线的渐近线于点且.若,则双曲线的离心率是 .
    【答案】
    【分析】联立直线和渐近线方程,可求出点,再根据可求得点,最后根据点在双曲线上,即可解出离心率.
    【详解】过且斜率为的直线,渐近线,
    联立,得,由,得
    而点在双曲线上,于是,解得:,所以离心率.
    故答案为:.
    27.(2021·全国新Ⅱ卷·高考真题)若双曲线的离心率为2,则此双曲线的渐近线方程 .
    【答案】
    【分析】根据离心率得出,结合得出关系,即可求出双曲线的渐近线方程.
    【详解】解:由题可知,离心率,即,
    又,即,则,
    故此双曲线的渐近线方程为.
    故答案为:.
    28.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点与双曲线的左焦点重合,若两曲线相交于,两点,且线段的中点是点,则该双曲线的离心率等于 .
    【答案】
    【分析】利用抛物线的性质,得到M的坐标,再带入到双曲线方程中,即可求解.
    【详解】由题意知:
    抛物线方程为:
    在抛物线上,所以
    在双曲线上,
    ,又,
    故答案为:
    29.(2020·江苏·高考真题)在平面直角坐标系xOy中,若双曲线﹣=1(a>0)的一条渐近线方程为y=x,则该双曲线的离心率是 .
    【答案】
    【分析】根据渐近线方程求得,由此求得,进而求得双曲线的离心率.
    【详解】双曲线,故.由于双曲线的一条渐近线方程为,即,所以,所以双曲线的离心率为.
    故答案为:
    【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.
    30.(2020·全国·高考真题)设双曲线C: (a>0,b>0)的一条渐近线为y=x,则C的离心率为 .
    【答案】
    【分析】根据已知可得,结合双曲线中的关系,即可求解.
    【详解】由双曲线方程可得其焦点在轴上,
    因为其一条渐近线为,
    所以,.
    故答案为:
    【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.
    31.(2020·全国·高考真题)已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为 .
    【答案】2
    【分析】根据双曲线的几何性质可知,,,即可根据斜率列出等式求解即可.
    【详解】联立,解得,所以.
    依题可得,,,即,变形得,,
    因此,双曲线的离心率为.
    故答案为:.
    【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题.
    32.(2019·全国·高考真题)已知双曲线C:的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,,则C的离心率为 .
    【答案】2.
    【分析】通过向量关系得到和,得到,结合双曲线的渐近线可得从而由可求离心率.
    【详解】如图,

    由得又得OA是三角形的中位线,即由,得则有,
    又OA与OB都是渐近线,得又,得.又渐近线OB的斜率为,所以该双曲线的离心率为.
    【点睛】本题考查平面向量结合双曲线的渐近线和离心率,渗透了逻辑推理、直观想象和数学运算素养.采取几何法,利用数形结合思想解题.
    33.(2018·江苏·高考真题)在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是 .
    【答案】2
    【详解】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.
    详解:因为双曲线的焦点到渐近线即的距离为所以,因此
    点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a.
    34.(2018·北京·高考真题)已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为 ;双曲线N的离心率为 .
    【答案】 2
    【分析】方法一:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,解得椭圆M的离心率.
    【详解】[方法一]:【最优解】数形结合+定义法
    由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为
    双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为,

    故答案为:;.
    [方法二]: 数形结合+齐次式求离心率
    设双曲线的一条渐近线与椭圆在第一象限的交点为,椭圆的右焦点为.由题可知,为正六边形相邻的两个顶点,所以(O为坐标原点).
    所以.因此双曲线的离心率.
    由与联立解得.
    因为是正三角形,所以,因此,可得.
    将代入上式,化简、整理得,即,解得,(舍去).
    所以,椭圆的离心率为,双曲线的离心率为2.
    故答案为:;.
    [方法三]:数形结合+椭圆定义+解焦点三角形
    由条件知双曲线N在第一、三象限的渐近线方程为,于是双曲线N的离心率为.
    设双曲线的一条渐近线与椭圆在第一象限的交点为A,椭圆的左、右焦点分别为.在中,.
    由正弦定理得.
    于是.
    即椭圆的离心率.
    故答案为:;.
    【整体点评】方法一:直接根据椭圆的定义以及正六边形性质求解,是该题的最优解;
    方法二:利用正六边形性质求出双曲线的离心率,根据平面几何条件创建齐次式求出椭圆的离心率,运算较为复杂;
    方法三:利用正六边形性质求出双曲线的离心率,再根据通过解焦点三角形求椭圆离心率.
    35.(2018·北京·高考真题)若双曲线的离心率为,则a= .
    【答案】4
    【详解】分析:根据离心率公式,及双曲线中的关系可联立方程组,进而求解参数的值.
    详解:在双曲线中,,且

    点睛:此题考查双曲线的基本知识,离心率是高考对于双曲线考查的一个重要考点,根据双曲线的离心率求双曲线的标准方程及双曲线的渐近线都是常见的出题形式,解题的关键在于利用公式,找到之间的关系.
    36.(2017·全国·高考真题)已知双曲线:的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线于交、两点,若,则的离心率为 .
    【答案】
    【详解】如图所示,

    由题意可得|OA|=a,|AN|=|AM|=b,
    ∵∠MAN=60°,
    ∴|AP|=b,
    ∴|OP|=.
    设双曲线C的一条渐近线y=x的倾斜角为θ,则tan θ=.
    又tan θ=,
    ∴,解得a2=3b2,
    ∴e=.
    答案:
    点睛:
    求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,再根据和转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).
    37.(2017·北京·高考真题)若双曲线的离心率为,则实数 .
    【答案】2
    【详解】,.渐近线方程是.
    38.(2016·山东·高考真题)已知双曲线E:–=1(a>0,b>0).矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是 .
    【答案】
    【详解】试题分析:不妨设,所以,由及,得:,两边同除以,则有,解方程得,(舍去),所以应该填.
    考点:双曲线的简单几何性质.
    39.(2015·山东·高考真题)过双曲线的右焦点作一条与其渐近线平行的直线,交于点.若点的横坐标为,则的离心率为­ .
    【答案】
    【详解】双曲线的右焦点为.不妨设所作直线与双曲线的渐近线平行,其方程为,代入求得点的横坐标为,由,得,解之得,(舍去,因为离心率),故双曲线的离心率为.
    考点:1.双曲线的几何性质;2.直线方程.
    40.(2015·山东·高考真题)平面直角坐标系中,双曲线的渐近线与抛物线交于点.若的垂心为的焦点,则的离心率为
    【答案】
    【详解】设 所在的直线方程为 ,则 所在的直线方程为,
    解方程组 得: ,所以点 的坐标为 ,
    抛物线的焦点 的坐标为: .因为是 的垂心,所以 ,
    所以, .
    所以, .
    考点:1、双曲线的标准方程与几何性质;2、抛物线的标准方程与几何性质.
    41.(2015·湖南·高考真题)设F是双曲线C:-=1(a>0,b>0)的一个焦点,若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为 .
    【答案】
    【详解】试题分析:根据对称性,不妨设,短轴端点为,从而可知点在双曲线上,
    ∴.
    考点:双曲线的标准方程及其性质.
    【名师点睛】本题主要考查了双曲线的标准方程及其性质,属于容易题,根据对称性将条件中的信息进行
    等价的转化是解题的关键,在求解双曲线的方程时,主要利用,焦点坐标,渐近线方程等性质,
    也会与三角形的中位线,相似三角形,勾股定理等平面几何知识联系起来.
    考点06 直线与圆锥曲线的位置关系及其应用
    1.(2023·全国新Ⅱ卷·高考真题)已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则( ).
    A.B.C.D.
    【答案】C
    【分析】首先联立直线方程与椭圆方程,利用,求出范围,再根据三角形面积比得到关于的方程,解出即可.
    【详解】将直线与椭圆联立,消去可得,
    因为直线与椭圆相交于点,则,解得,
    设到的距离到距离,易知,
    则,,
    ,解得或(舍去),
    故选:C.
    2.(2021·全国乙卷·高考真题)设B是椭圆的上顶点,点P在C上,则的最大值为( )
    A.B.C.D.2
    【答案】A
    【分析】设点,由依题意可知,,,再根据两点间的距离公式得到,然后消元,即可利用二次函数的性质求出最大值.
    【详解】设点,因为,,所以

    而,所以当时,的最大值为.
    故选:A.
    【点睛】本题解题关键是熟悉椭圆的简单几何性质,由两点间的距离公式,并利用消元思想以及二次函数的性质即可解出.易错点是容易误认为短轴的相对端点是椭圆上到上定点B最远的点,或者认为是椭圆的长轴的端点到短轴的端点距离最大,这些认识是错误的,要注意将距离的平方表示为二次函数后,自变量的取值范围是一个闭区间,而不是全体实数上求最值..
    3.(2020·全国·高考真题)设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=( )
    A.1B.2C.4D.8
    【答案】A
    【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.
    【详解】,,根据双曲线的定义可得,
    ,即,
    ,,
    ,即,解得,
    故选:A.
    【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.
    4.(2020·全国·高考真题)设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为( )
    A.B.C.D.
    【答案】B
    【分析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.
    【详解】因为直线与抛物线交于两点,且,
    根据抛物线的对称性可以确定,所以,
    代入抛物线方程,求得,所以其焦点坐标为,
    故选:B.
    【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.
    5.(2020·全国·高考真题)设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为( )
    A.B.3C.D.2
    【答案】B
    【分析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.
    【详解】由已知,不妨设,
    则,因为,
    所以点在以为直径的圆上,
    即是以P为直角顶点的直角三角形,
    故,
    即,又,
    所以,
    解得,所以
    故选:B
    【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.
    6.(2020·全国·高考真题)设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为( )
    A.4B.8C.16D.32
    【答案】B
    【分析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.
    【详解】
    双曲线的渐近线方程是
    直线与双曲线的两条渐近线分别交于,两点
    不妨设为在第一象限,在第四象限
    联立,解得

    联立,解得

    面积为:
    双曲线
    其焦距为
    当且仅当取等号
    的焦距的最小值:
    故选:B.
    【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.
    7.(2019·全国·高考真题)已知是双曲线的一个焦点,点在上,为坐标原点,若,则的面积为
    A.B.C.D.
    【答案】B
    【解析】设,因为再结合双曲线方程可解出,再利用三角形面积公式可求出结果.
    【详解】设点,则①.
    又,
    ②.
    由①②得,
    即,

    故选B.
    【点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.
    8.(2017·全国·高考真题)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( )
    A. B.C.D.
    【答案】C
    【解析】联立方程解得M(3,),根据MN⊥l得|MN|=|MF|=4,得到△MNF是边长为4的等边三角形,计算距离得到答案.
    【详解】依题意得F(1,0),则直线FM的方程是y=(x-1).由得x=或x=3.
    由M在x轴的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4
    又∠NMF等于直线FM的倾斜角,即∠NMF=60°,因此△MNF是边长为4的等边三角形
    点M到直线NF的距离为
    故选:C.
    【点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力.
    9.(2018·全国·高考真题)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=
    A.5B.6C.7D.8
    【答案】D
    【分析】首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.
    【详解】根据题意,过点(–2,0)且斜率为的直线方程为,
    与抛物线方程联立,消元整理得:,
    解得,又,
    所以,
    从而可以求得,故选D.
    【点睛】该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.
    10.(2016·四川·高考真题)设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )
    A.B.C.D.1
    【答案】C
    【分析】方法一:设,根据题意求出点的坐标,再根据基本不等式即可求出.
    【详解】[方法一]:【最优解】直接法
    设,由题意知,显然时不符合题意,故,则
    ,可得:,当且仅当时取等号.
    故选:C.
    [方法二]:参数法
    由题意可知:,设点坐标为,点坐标为.
    ,则,即,
    ,当且仅当等号成立.
    则直线斜率的最大值.
    故选:C.
    [方法三]:几何法
    由题意可知:,点坐标为,点坐标为,作点关于点的对称点,由已知可得点为重心,坐标为
    ,当且仅当等号成立.
    则直线斜率的最大值.
    故选:C.
    [方法四]:方程法
    由题意可知:,设点坐标为,点坐标为.
    易知直线的斜率最大时,,,则,
    可得,即
    点的轨迹方程为:与联立
    可得,
    ,则直线斜率的最大值.
    故选:C.
    【整体点评】方法一:设出点的坐标,再求出点坐标,根据基本不等式求出最值,简单高效,是该题的通性通法,也是最优解;
    方法二:同方法一几乎一致,只是设点的坐标形式与方法一不同;
    方法三:构造三角形,利用三角形重心性质求出点坐标,再基本不等式求出最值;
    方法四:先求出点的轨迹方程,根据直线与抛物线的位置关系解出.
    11.(2015·全国·高考真题)已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线的焦点
    重合,是C的准线与E的两个交点,则
    A.B.C.D.
    【答案】B
    【详解】试题分析:抛物线的焦点为所以椭圆的右焦点为即且椭圆的方程为抛物线准线为代入椭圆方程中得故选B.
    考点:1、抛物线的性质;2、椭圆的标准方程.
    二、填空题
    12.(2024·北京·高考真题)若直线与双曲线只有一个公共点,则的一个取值为 .
    【答案】(或,答案不唯一)
    【分析】联立直线方程与双曲线方程,根据交点个数与方程根的情况列式即可求解.
    【详解】联立,化简并整理得:,
    由题意得或,
    解得或无解,即,经检验,符合题意.
    故答案为:(或,答案不唯一).
    13.(2023·天津·高考真题)已知过原点O的一条直线l与圆相切,且l与抛物线交于点两点,若,则 .
    【答案】
    【分析】根据圆和曲线关于轴对称,不妨设切线方程为,,即可根据直线与圆的位置关系,直线与抛物线的位置关系解出.
    【详解】易知圆和曲线关于轴对称,不妨设切线方程为,,
    所以,解得:,由解得:或,
    所以,解得:.
    当时,同理可得.
    故答案为:.
    14.(2022·全国新Ⅱ卷·高考真题)已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为 .
    【答案】
    【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解;
    【详解】[方法一]:弦中点问题:点差法
    令的中点为,设,,利用点差法得到,
    设直线,,,求出、的坐标,
    再根据求出、,即可得解;
    解:令的中点为,因为,所以,
    设,,则,,
    所以,即
    所以,即,设直线,,,
    令得,令得,即,,
    所以,
    即,解得或(舍去),
    又,即,解得或(舍去),
    所以直线,即;
    故答案为:
    [方法二]:直线与圆锥曲线相交的常规方法
    解:由题意知,点既为线段的中点又是线段MN的中点,
    设,,设直线,,,
    则,,,因为,所以
    联立直线AB与椭圆方程得消掉y得
    其中,
    ∴AB中点E的横坐标,又,∴
    ∵,,∴,又,解得m=2
    所以直线,即
    15.(2021·全国甲卷·高考真题)已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为 .
    【答案】
    【分析】根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.
    【详解】因为为上关于坐标原点对称的两点,
    且,所以四边形为矩形,
    设,则,
    所以,
    ,即四边形面积等于.
    故答案为:.
    16.(2020·山东·高考真题)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则= .
    【答案】
    【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y并整理得到关于x的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.
    【详解】∵抛物线的方程为,∴抛物线的焦点F坐标为,
    又∵直线AB过焦点F且斜率为,∴直线AB的方程为:
    代入抛物线方程消去y并化简得,
    解法一:解得
    所以
    解法二:
    设,则,
    过分别作准线的垂线,设垂足分别为如图所示.
    故答案为:
    【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.
    17.(2019·浙江·高考真题)已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是 .
    【答案】
    【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.
    【详解】方法1:由题意可知,
    由中位线定理可得,设可得,
    联立方程
    可解得(舍),点在椭圆上且在轴的上方,
    求得,所以

    方法2:焦半径公式应用
    解析1:由题意可知,
    由中位线定理可得,即
    求得,所以.
    【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.
    18.(2018·全国·高考真题)已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则 .
    【答案】2
    【分析】方法一:利用点差法得到AB的斜率,结合抛物线定义可得结果.
    【详解】[方法一]:点差法
    设,则,所以
    所以,
    取AB中点,分别过点A,B作准线的垂线,垂足分别为
    因为,,
    因为为AB中点,所以平行于x轴,
    因为M(-1,1),所以,则即.
    故答案为:2.
    [方法二]:【最优解】焦点弦的性质
    记抛物线的焦点为F,因为,则以为直径的圆与准线相切于点M,由抛物线的焦点弦性质可知,所以.
    [方法三]: 焦点弦性质+韦达定理
    记抛物线的焦点为F,因为,则以为直径的圆与准线相切于点M,记中点为N,则,设,代入中,得,所以,得,所以.
    [方法四]:【通性通法】暴力硬算
    由题知抛物线的焦点为,设直线的方程为,代入中得,设,则,同理有,由,即.又,所以,得.
    [方法五]:距离公式+直角三角形的性质
    设直线为,与联立得,则从而,可得的中点,所以.
    又由弦长公式知.
    由得,解得,所以.
    [方法六]:焦点弦的性质应用
    由题可知,线段为抛物线的焦点弦,,由于以抛物线的焦点弦为直径的圆必与准线相切,又点M恰为抛物线准线上的点,因此,以为直径的圆必与准线相切于点M.
    过点M作平行于轴的直线交于点N,则N为圆心.
    设,则.
    又因为,所以联立解得.将的值代入中求得.
    因为抛物线C的焦点,所以.
    【整体点评】方法一:根据点差法找出直线的斜率与两点纵坐标的关系,再根据抛物线定义求出中点坐标,从而解出;
    方法二:直接根据焦点弦的性质解出,是该题的最优解;
    方法三:根据焦点弦性质可知,直线过点,再根据韦达定理求出直线的斜率;
    方法四:直接设出直线方程,联立运算,属于解决直线与抛物线位置关系问题的通性通法,思路直接,运算复杂;
    方法五:反设直线,再通过联立,利用直角三角形的性质求解,运算较复杂;
    方法六:利用焦点弦的性质直接求出其中一点的坐标,再根据斜率公式求出.
    考点07 曲线方程及曲线轨迹
    1.(2024·全国新Ⅰ卷·高考真题)(多选)设计一条美丽的丝带,其造型可以看作图中的曲线C的一部分.已知C过坐标原点O.且C上的点满足:横坐标大于,到点的距离与到定直线的距离之积为4,则( )
    A.B.点在C上
    C.C在第一象限的点的纵坐标的最大值为1D.当点在C上时,
    【答案】ABD
    【分析】根据题设将原点代入曲线方程后可求,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.
    【详解】对于A:设曲线上的动点,则且,
    因为曲线过坐标原点,故,解得,故A正确.
    对于B:又曲线方程为,而,
    故.
    当时,,
    故在曲线上,故B正确.
    对于C:由曲线的方程可得,取,
    则,而,故此时,
    故在第一象限内点的纵坐标的最大值大于1,故C错误.
    对于D:当点在曲线上时,由C的分析可得,
    故,故D正确.
    故选:ABD.
    【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.
    2.(2024·全国新Ⅱ卷·高考真题)已知曲线C:(),从C上任意一点P向x轴作垂线段,为垂足,则线段的中点M的轨迹方程为( )
    A.()B.()
    C.()D.()
    【答案】A
    【分析】设点,由题意,根据中点的坐标表示可得,代入圆的方程即可求解.
    【详解】设点,则,
    因为为的中点,所以,即,
    又在圆上,
    所以,即,
    即点的轨迹方程为.
    故选:A
    3.(2021·浙江·高考真题)已知,函数.若成等比数列,则平面上点的轨迹是( )
    A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线
    【答案】C
    【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.
    【详解】由题意得,即,
    对其进行整理变形:




    所以或,
    其中为双曲线,为直线.
    故选:C.
    【点睛】关键点点睛:本题考查轨迹方程,关键之处在于由题意对所得的等式进行恒等变形,提现了核心素养中的逻辑推理素养和数学运算素养,属于中等题.
    4.(2020·全国新Ⅰ卷·高考真题)已知曲线.( )
    A.若m>n>0,则C是椭圆,其焦点在y轴上
    B.若m=n>0,则C是圆,其半径为
    C.若mn<0,则C是双曲线,其渐近线方程为
    D.若m=0,n>0,则C是两条直线
    【答案】ACD
    【分析】结合选项进行逐项分析求解,时表示椭圆,时表示圆,时表示双曲线,时表示两条直线.
    【详解】对于A,若,则可化为,
    因为,所以,
    即曲线表示焦点在轴上的椭圆,故A正确;
    对于B,若,则可化为,
    此时曲线表示圆心在原点,半径为的圆,故B不正确;
    对于C,若,则可化为,
    此时曲线表示双曲线,
    由可得,故C正确;
    对于D,若,则可化为,
    ,此时曲线表示平行于轴的两条直线,故D正确;
    故选:ACD.
    【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.
    5.(2020·全国·高考真题)在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为( )
    A.圆B.椭圆C.抛物线D.直线
    【答案】A
    【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.
    【详解】设,以AB中点为坐标原点建立如图所示的平面直角坐标系,

    则:,设,可得:,
    从而:,
    结合题意可得:,
    整理可得:,
    即点C的轨迹是以AB中点为圆心,为半径的圆.
    故选:A.
    【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.
    6.(2019·北京·高考真题)数学中有许多形状优美、寓意美好的曲线,曲线C:就是其中之一(如图).给出下列三个结论:
    ①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
    ②曲线C上任意一点到原点的距离都不超过;
    ③曲线C所围成的“心形”区域的面积小于3.
    其中,所有正确结论的序号是
    A.①B.②C.①②D.①②③
    【答案】C
    【分析】将所给方程进行等价变形确定x的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.
    【详解】由得,,,
    所以可为的整数有0,-1,1,从而曲线恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.
    由得,,解得,所以曲线上任意一点到原点的距离都不超过. 结论②正确.
    如图所示,易知,
    四边形的面积,很明显“心形”区域的面积大于,即“心形”区域的面积大于3,说法③错误.
    故选C.
    【点睛】本题考查曲线与方程、曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识、基本运算能力及分析问题解决问题的能力考查,渗透“美育思想”.
    7.(2016·四川·高考真题)在平面直角坐标系中,当不是原点时,定义的“伴随点”为,当P是原点时,定义“伴随点”为它自身,现有下列命题:
    ①若点A的“伴随点”是点,则点的“伴随点”是点.
    ②单元圆上的“伴随点”还在单位圆上.
    ③若两点关于x轴对称,则他们的“伴随点”关于y轴对称
    ④若三点在同一条直线上,则他们的“伴随点”一定共线.
    其中的真命题是 .
    【答案】②③
    【详解】对于①,若令,则其伴随点为,
    而的伴随点为,而不是,故错误;
    对于②,设曲线关于轴对称,
    则对曲线表示同一曲线,
    其伴随曲线分别为与也表示同一曲线,
    又因为其伴随曲线分别为与的图象关于轴对称,所以正确;
    ③令单位圆上点的坐标为其伴随点为仍在单位圆上,
    故正确;
    对于④,直线上取点后得其伴随点消参后轨迹是圆,
    故错误.
    故答案为:②③.
    8.(2015·山东·高考真题)关于,的方程,给出以下命题;
    ①当时,方程表示双曲线;②当时,方程表示抛物线;③当时,方程表示椭圆;④当时,方程表示等轴双曲线;⑤当时,方程表示椭圆.
    其中,真命题的个数是( )
    A.2B.3C.4D.5
    【答案】B
    【分析】根据曲线方程,讨论m的取值确定对应曲线的类别即可.
    【详解】当时,方程表示双曲线;
    当时,方程表示两条垂直于轴的直线;
    当时,方程表示焦点在轴上的椭圆;
    当时,方程表示圆;
    当时,方程表示焦点在轴上的椭圆.
    ∴①③⑤正确.
    故答案为:B
    9.(2015·浙江·高考真题)如图,斜线段与平面所成的角为,为斜足,平面上的动点满足,则点的轨迹是
    A.直线B.抛物线
    C.椭圆D.双曲线的一支
    【答案】C
    【详解】用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线.
    此题中平面上的动点满足,可理解为在以为轴的圆锥的侧面上,
    再由斜线段与平面所成的角为,可知的轨迹符合圆锥曲线中椭圆定义.
    故可知动点的轨迹是椭圆.
    故选C.
    考点:1.圆锥曲线的定义;2.线面位置关系.
    考点08 圆锥曲线中的最值及范围问题
    1.(2021·全国乙卷·高考真题)设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )
    A.B.C.D.
    【答案】C
    【分析】设,由,根据两点间的距离公式表示出 ,分类讨论求出的最大值,再构建齐次不等式,解出即可.
    【详解】设,由,因为 ,,所以

    因为,当,即 时,,即 ,符合题意,由可得,即 ;
    当,即时, ,即,化简得, ,显然该不等式不成立.
    故选:C.
    【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.
    2.(2021·全国乙卷·高考真题)设B是椭圆的上顶点,点P在C上,则的最大值为( )
    A.B.C.D.2
    【答案】A
    【分析】设点,由依题意可知,,,再根据两点间的距离公式得到,然后消元,即可利用二次函数的性质求出最大值.
    【详解】设点,因为,,所以

    而,所以当时,的最大值为.
    故选:A.
    【点睛】本题解题关键是熟悉椭圆的简单几何性质,由两点间的距离公式,并利用消元思想以及二次函数的性质即可解出.易错点是容易误认为短轴的相对端点是椭圆上到上定点B最远的点,或者认为是椭圆的长轴的端点到短轴的端点距离最大,这些认识是错误的,要注意将距离的平方表示为二次函数后,自变量的取值范围是一个闭区间,而不是全体实数上求最值..
    3.(2021·全国新Ⅰ卷·高考真题)已知,是椭圆:的两个焦点,点在上,则的最大值为( )
    A.13B.12C.9D.6
    【答案】C
    【分析】本题通过利用椭圆定义得到,借助基本不等式即可得到答案.
    【详解】由题,,则,
    所以(当且仅当时,等号成立).
    故选:C.
    【点睛】
    4.(2020·全国·高考真题)设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为( )
    A.4B.8C.16D.32
    【答案】B
    【分析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.
    【详解】
    双曲线的渐近线方程是
    直线与双曲线的两条渐近线分别交于,两点
    不妨设为在第一象限,在第四象限
    联立,解得

    联立,解得

    面积为:
    双曲线
    其焦距为
    当且仅当取等号
    的焦距的最小值:
    故选:B.
    【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.
    5.(2018·浙江·高考真题)已知点P(0,1),椭圆 (m>1)上两点A,B满足,则当m= 时,点B横坐标的绝对值最大.
    【答案】5
    【分析】方法一:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m的函数关系,最后根据二次函数性质确定最值即可解出.
    【详解】[方法一]:点差法+二次函数性质
    设,由得
    因为A,B在椭圆上,所以 ,即,与相减得:,所以,
    ,当且仅当时取最等号,即时,点B横坐标的绝对值最大.
    故答案为:5.
    [方法二]:【通性通法】设线+韦达定理
    由条件知直线的斜率存在,设,直线的方程为,联立得,根据韦达定理得,由知,代入上式解得,所以.此时,又,解得.
    [方法三]:直线的参数方程+基本不等式
    设直线的参数方程为其中t为参数,为直线的倾斜角,将其代入椭圆方程中化简得,设点A,B对应的参数分别为,则.由韦达定理知,解得,所以,此时,即,代入,解得.
    [方法四]:直接硬算求解+二次函数性质
    设,因为,所以.
    即 ①, ②,
    又因为,所以.
    不妨设,因此,代入②式可得.化简整理得.
    由此可知,当时,上式有最大值16,即点B横坐标的绝对值有最大值2.
    所以.
    [方法五]:【最优解】仿射变换
    如图1,作如下仿射变换,则为一个圆.
    根据仿射变换的性质,点B的横坐标的绝对值最大,等价于点的横坐标的绝对值最大,则

    当时等号成立,根据易得,此时.
    [方法六]:中点弦性质的应用
    设,由可知,则中点.因为,所以,整理得,由于,则时,,所以.
    【整体点评】方法一:由题意中点的坐标关系,以及点差法可求出点的横、纵坐标,从而可以根据二次函数的性质解出;
    方法二:常规设线,通过联立,根据韦达定理以及题目条件求出点的横坐标,然后利用基本不等式求出最值,由取等条件得解,是该题的通性通法;
    方法三:利用直线的参数方程与椭圆方程联立,根据参数的几何意义,解得点的横坐标,再利用基本不等式求出最值,由取等条件得解;
    方法四:利用题目条件硬算求出点的横坐标,再根据二次函数的性质解出;
    方法五:根据仿射变换,利用圆的几何性质结合平面几何知识转化,求出对应点的横坐标的绝对值最大,从而解出,计算难度小,是该题的最优解;
    方法六:利用中点弦的性质找出点的横、纵坐标关系,再根据关系式自身特征求出点的横坐标的绝对值的最大值,从而解出,计算量小,也是不错的方法.
    6.(2017·全国·高考真题)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为
    A.16B.14C.12D.10
    【答案】A
    【详解】设,直线的方程为,联立方程,得,∴,同理直线与抛物线的交点满足,由抛物线定义可知
    ,当且仅当(或)时,取等号.
    点睛:对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为,则,则,所以
    .
    7.(2017·全国·高考真题)(2017新课标全国卷Ⅰ文科)设A,B是椭圆C:长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是
    A.B.
    C.D.
    【答案】A
    【详解】当时,焦点在轴上,要使C上存在点M满足,则,即,得;当时,焦点在轴上,要使C上存在点M满足,则,即,得,故的取值范围为,选A.
    点睛:本题设置的是一道以椭圆知识为背景的求参数范围的问题.解答问题的关键是利用条件确定的关系,求解时充分借助题设条件转化为,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.
    8.(2017·全国·高考真题)若,则双曲线的离心率的取值范围是
    A.B.C.D.
    【答案】C
    【详解】, ,
    , , ,则,选C.
    9.(2016·四川·高考真题)设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )
    A.B.C.D.1
    【答案】C
    【分析】方法一:设,根据题意求出点的坐标,再根据基本不等式即可求出.
    【详解】[方法一]:【最优解】直接法
    设,由题意知,显然时不符合题意,故,则
    ,可得:,当且仅当时取等号.
    故选:C.
    [方法二]:参数法
    由题意可知:,设点坐标为,点坐标为.
    ,则,即,
    ,当且仅当等号成立.
    则直线斜率的最大值.
    故选:C.
    [方法三]:几何法
    由题意可知:,点坐标为,点坐标为,作点关于点的对称点,由已知可得点为重心,坐标为
    ,当且仅当等号成立.
    则直线斜率的最大值.
    故选:C.
    [方法四]:方程法
    由题意可知:,设点坐标为,点坐标为.
    易知直线的斜率最大时,,,则,
    可得,即
    点的轨迹方程为:与联立
    可得,
    ,则直线斜率的最大值.
    故选:C.
    【整体点评】方法一:设出点的坐标,再求出点坐标,根据基本不等式求出最值,简单高效,是该题的通性通法,也是最优解;
    方法二:同方法一几乎一致,只是设点的坐标形式与方法一不同;
    方法三:构造三角形,利用三角形重心性质求出点坐标,再基本不等式求出最值;
    方法四:先求出点的轨迹方程,根据直线与抛物线的位置关系解出.
    10.(2016·全国·高考真题)已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是
    A.(–1,3)B.(–1,)C.(0,3)D.(0,)
    【答案】A
    【详解】由题意知:双曲线的焦点在轴上,所以,解得,因为方程表示双曲线,所以,解得,所以的取值范围是,故选A.
    【考点】双曲线的性质
    【名师点睛】双曲线知识一般作为客观题出现,主要考查双曲线的几何性质,属于基础题.注意双曲线的焦距是2c而不是c,这一点易出错.
    11.(2016·浙江·高考真题)设双曲线x2–=1的左、右焦点分别为F1,F2.若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是 .
    【答案】.
    【详解】试题分析:由已知得,则,设是双曲线上任一点,由对称性不妨设在双曲线的右支上,则,,,为锐角,则,即,解得,所以,则.
    【考点】双曲线的几何性质.
    【思路点睛】先由对称性可设点在右支上,进而可得和,再由为锐角三角形可得,进而可得的不等式,解不等式可得的取值范围.
    12.(2015·上海·高考真题)抛物线上的动点到焦点的距离的最小值为1,则 .
    【答案】2
    【详解】设点点的坐标为,根据抛物线的定义,可得,
    当时,取得最小值,解得.
    考点:抛物线的性质,最值.
    13.(2015·全国·高考真题)已知是双曲线:上的一点,,是的两个焦点,若,则的取值范围是
    A.B.C.D.
    【答案】A
    【详解】由题知,,所以==,解得,故选A.
    考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.
    14.(2015·江苏·高考真题)在平面直角坐标系中,为双曲线右支上的一个动点.若点到直线的距离大于c恒成立,则实数c的最大值为
    【答案】
    【详解】设,因为直线平行于渐近线,所以点到直线的距离恒大于直线与渐近线之间距离,因此c的最大值为直线与渐近线之间距离,为
    考点:双曲线渐近线,恒成立转化
    考点
    十年考情(2015-2024)
    命题趋势
    考点1 椭圆方程及其性质
    (10年6考)
    2023·全国甲卷、2023·全国甲卷、2022·全国新Ⅰ卷
    2021·全国新Ⅰ卷、2020·山东卷、2019·全国卷、2019·全国卷
    2015·山东卷、2015·全国卷、2015·广东卷、2015·全国卷
    熟练掌握椭圆、双曲线、抛物线的方程及其性质应用,是高考高频考点
    熟练掌握椭圆和双曲线的离心率的求解及应用,同样是高考热点命题方向
    熟练掌握直线与圆锥曲线的位置关系,并会求解最值及范围,该内容也是命题热点
    掌握曲线方程及轨迹方程
    考点2 双曲线方程及其性质
    (10年10考)
    2024·天津卷、2023·全国甲卷、2023·全国乙卷、2023·天津卷
    2023·北京卷、2022·全国甲卷、2022·全国甲卷、2022·北京卷
    2022·天津卷、2021·北京卷、2021·全国乙卷、2021·全国乙卷
    2021·全国新Ⅱ卷、2020·北京卷、2021·全国甲卷、2020·天津卷
    2020·浙江卷、2019·全国卷、2019·江苏卷、2018·北京卷
    2018·全国卷、2018·浙江卷、2018·全国卷、2018·全国卷
    2018·天津卷、2017·天津卷、2017·天津卷、2017·全国卷
    2017·上海卷、2017·山东卷、2017·全国卷、2017·江苏卷
    2016·江苏卷、2016·北京卷、2016·浙江卷、2016·北京卷
    2016·天津卷、2016·全国卷、2016·天津卷、2015·广东卷
    2015·重庆卷、2015·天津卷、2015·安徽卷、2015·福建卷
    2015·江苏卷、2015·浙江卷、2015·全国卷、2015·上海卷
    2015·上海卷、2015·全国卷、2015·北京卷
    考点3 抛物线方程及其性质
    (10年10考)
    2024·全国新Ⅱ卷、2024·北京卷、2024·上海卷、2024·天津卷
    2023·全国乙卷、2023·北京卷、2023·全国新Ⅱ卷
    2022·全国新Ⅱ卷、2022·全国新Ⅰ卷、2022·全国乙卷
    2021·全国新Ⅱ卷、2021·北京卷、2021·全国卷、2020·北京卷
    2020·全国卷、2019·全国卷、2019·北京卷、2018·北京卷
    2018·全国卷、2017·全国卷、2017·天津卷、2017·全国卷
    2016·浙江卷、2016·天津卷、2016·全国卷、2016·四川卷
    2015·浙江卷、2015·全国卷、2015·陕西卷、2015·上海卷
    2015·陕西卷
    考点4 椭圆的离心率及其应用
    (10年8考)
    2023·全国新Ⅰ卷、2022·全国甲卷、2022·全国甲卷
    2021·全国乙卷、2021·浙江卷、2019·北京卷、2018·北京卷
    2018·全国卷、2018·全国卷、2018·全国卷、2017·浙江卷
    2017·全国卷、2016·浙江卷、2016·全国卷、2016·全国卷
    2016·江苏卷、2015·福建卷、2015·浙江卷
    考点5 双曲线的离心率及其应用
    (10年10考)
    2024·全国甲卷、2024·全国新Ⅰ卷、2023·全国新Ⅰ卷
    2023·北京卷、2022·全国乙卷、2022·全国甲卷、2022·浙江卷
    2021·全国甲卷、2021·天津卷、2021·北京卷
    2021·全国新Ⅱ卷、2020·山东卷、2020·江苏卷、2020·全国卷
    2020·全国卷、2019·北京卷、2019·天津卷、2019·全国卷
    2019·全国卷、2019·全国卷、2018·江苏卷、2018·北京卷
    2018·北京卷、2018·全国卷、2018·天津卷、2017·天津卷
    2017·全国卷、2017·全国卷、2017·全国卷、2017·北京卷
    2016·山东卷、2016·浙江卷、2016·全国卷、2015·广东卷
    2015·湖南卷、2015·湖北卷、2015·全国卷、2015·山东卷
    2015·山东卷、2015·山东卷、2015·湖南卷
    考点6 直线与圆锥曲线的位置关系及其应用
    (10年10考)
    2024·北京卷、2023·天津卷、2023·全国新Ⅱ卷
    2022·全国新Ⅱ卷、2021·全国甲卷、2021·全国乙卷
    2020·全国卷、2020·全国卷、2020·全国卷、2020·全国卷
    2020·山东卷、2019·浙江卷、2019·全国卷、2018·全国卷
    2018·全国卷、2017·全国卷、2016·四川卷、2015·全国卷
    考点7 曲线方程及曲线轨迹
    (10年6考)
    2024·全国新Ⅰ卷、2024·全国新Ⅱ卷、2021·浙江卷
    2020·全国新Ⅰ卷、2020·全国卷、2019·北京卷
    2016·四川卷、2015·山东卷、2015·浙江卷
    考点8 圆锥曲线中的最值及范围问题
    (10年6考)
    2021·全国乙卷、2021·全国乙卷、2021·全国新Ⅰ卷
    2020·全国卷、2018·浙江卷、2017·全国卷、2017·全国卷
    2017·全国卷、2016·四川卷、2016·全国卷、2016·浙江卷
    2015·上海卷、2015·全国卷、2015·江苏卷
    相关试卷

    专题18 圆锥曲线(椭圆、双曲线、抛物线)小题综合(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用): 这是一份专题18 圆锥曲线(椭圆、双曲线、抛物线)小题综合(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用),共25页。试卷主要包含了的左焦点为,则等内容,欢迎下载使用。

    专题16 导数及其应用小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用): 这是一份专题16 导数及其应用小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用),共49页。试卷主要包含了设函数等内容,欢迎下载使用。

    专题08 数列小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用): 这是一份专题08 数列小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用),共43页。试卷主要包含了设,数列中,, ,则,设为等差数列的前项和,若,,则,记为等差数列的前项和等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map