- 21.2.1 配方法第1课 直接开平方法-2024-2025学年九年级数学上册教材配套同步课件(人教版) 课件 0 次下载
- 21.2.1 配方法第3课 配方法应用-2024-2025学年九年级数学上册教材配套同步课件(人教版) 课件 0 次下载
- 21.2.2 公式法第2课 根的判别式-2024-2025学年九年级数学上册教材配套同步课件(人教版) 课件 0 次下载
- 21.2.3 因式分解法第1课 解方程-2024-2025学年九年级数学上册教材配套同步课件(人教版) 课件 0 次下载
- 21.2.3 因式分解法第2课 十字相乘法-2024-2025学年九年级数学上册教材配套同步课件(人教版) 课件 0 次下载
人教版(2024)九年级上册21.2.2 公式法优秀ppt课件
展开配方法解一元二次方程的步骤:
变形:把未知项和常数项移在方程左右边,并将二次项系数化为 1
配方:在方程两同时加上一次项系数一半的平方。
整理:解方程左边写成 (x + n)2 = p的形式。
求解:运用直接开平方法解方程。
ax2 + bx + c=0 (a≠0)
(x+n)2=p (p ≥0)
用配方法解一般形式一元二次方程 ax2 + bx + c = 0 (a ≠ 0).
方程两边都除以 a,得
∵ a≠0,∴ 4a2 > 0.
而 b2-4ac 的符号有以下三种情况:
(1) b2-4ac >0,
则方程有两个不相等的实数根
(2) b2 - 4ac = 0,
(3) b2 - 4ac <0,
一元二次方程 ax2 + bx + c = 0 (a ≠ 0)的求根公式:
(1) b2-4ac ≥ 0,
解一个具体的一元二次方程时,把系数直接代入求根公式,可以避免配方过程而直接得出根,这种解法一元二次方程的方法叫做公式法
例1 用公式法解下列方程
(1) x2 − 4x − 7 = 0;
(3) 5x2-3x = x + 1;
(4) x2 + 17 = 8x.
方程有两个不等的实数根
解:a = 1,b = −4,c = −7.
Δ = b2-4ac = (−4)2-4×1×(−7) = 44>0.
方程有两个相等的实数根
a = 5,b = -4,c = -1.
Δ = b2-4ac = (-4)2-4×5×(-1) = 36>0.
解:方程化为 5x2-4x-1 = 0.
a = 1,b = −8,c = 17.
Δ = b2 − 4ac = (−8)2 − 4×1×17 = −4<0.
解:方程化为 x2-8x + 17 = 0.
1. 变形:化已知方程变形为一般形式; 2. 定数:确定 a,b,c 各项系数;3. 判定:计算Δ =b2 − 4ac 的值;并判定其符号 4. 计算:若 Δ = b2 − 4ac≥0,则利用求根公式求出; 若 b2 − 4ac<0,则方程没有实数根.
1.用公式法解下列一元二次方程:
(1)x2-6x+1=0
(4)4x2-3x-1=x-2
(3)3x(x-3)=2(x-1)(x+1)
例2 在设计人体雕像时,使雕像的上部 AC (腰以上)与下部 BC (腰以下)的高度比,等于下部 BC 与全部 AB (全身)的高度比,可以增加视觉美感.按此比例,假设如图所示的雕像高 AB 为 2 m,下部 BC = x m,请列出方程.
解:列方程得x 2 = 2(2 - x ),整理得 x 2 + 2x - 4 = 0.①
AC∶BC = BC∶AB
即 BC2 = AB • AC
ax2 + bx + c = 0 (a ≠ 0)
a ≠ 0Δ = b2 − 4ac≥0
1. 变形 2. 定数3. 判定 4. 计算:
1.用公式法解方程 x2-2=-3x 时,a,b,c的值依次是( )A.0,-2,-3 B.1,3,-2C.1,-3,-2 D.1,-2,-3
2.已知三角形两边长分别为5和9,第三边长是方程x2-9x+8=0的根,则这个三角形的周长是_________.
(1)2x2-6x=9-x.
(2)x2-3x+4=0
(4)2x2+3x-1=0
(2) x2-3x+4=0.解:a=1,b=-3,c=4.Δ=b2-4ac=(-3)2-4×1×4=-7<0.方程无实数根.
初中数学第二十一章 一元二次方程21.2 解一元二次方程21.2.2 公式法集体备课课件ppt: 这是一份初中数学<a href="/sx/tb_c88754_t3/?tag_id=26" target="_blank">第二十一章 一元二次方程21.2 解一元二次方程21.2.2 公式法集体备课课件ppt</a>,共29页。PPT课件主要包含了复习引入,新知探究,解移项得,配方得,两个不相等的实数根,两个相等的实数根,没有实数根,两个实数根,Δ≥0,有两个相等的实数根等内容,欢迎下载使用。
初中数学人教版九年级上册第二十一章 一元二次方程21.2 解一元二次方程21.2.2 公式法图片课件ppt: 这是一份初中数学人教版九年级上册<a href="/sx/tb_c88754_t3/?tag_id=26" target="_blank">第二十一章 一元二次方程21.2 解一元二次方程21.2.2 公式法图片课件ppt</a>,共22页。PPT课件主要包含了课时目标,探究新知,推导求根公式,移项得,配方得,∴方程无实数根,练习巩固公式法,用公式法解这个方程,拓展延伸,课堂小结等内容,欢迎下载使用。
初中数学人教版九年级上册21.2.2 公式法教学演示课件ppt: 这是一份初中数学人教版九年级上册<a href="/sx/tb_c88754_t3/?tag_id=26" target="_blank">21.2.2 公式法教学演示课件ppt</a>,共23页。PPT课件主要包含了人教版九年级上,两个不相等的实数根,两个相等的实数根,两个实数根,没有实数根,Δ≥0,有两个不相等的实数根,有两个相等的实数根,二次项系数不为0,k≠0等内容,欢迎下载使用。