三年(2022-2024)高考数学真题分类汇编(全国通用)专题06 平面解析几何(解答题)(八大考点)(原卷版)
展开这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题06 平面解析几何(解答题)(八大考点)(原卷版),共8页。试卷主要包含了已知椭圆的一个顶点为,焦距为,如图,已知椭圆,已知椭圆,已知和为椭圆上两点.,已知直线与抛物线交于两点,且等内容,欢迎下载使用。
考点1:弦长、周长问题
1.(2023年新课标全国Ⅰ卷数学真题)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
(1)求的方程;
(2)已知矩形有三个顶点在上,证明:矩形的周长大于.
2.(2022年新高考北京数学高考真题)已知椭圆的一个顶点为,焦距为.
(1)求椭圆E的方程;
(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.
3.(2022年新高考浙江数学高考真题)如图,已知椭圆.设A,B是椭圆上异于的两点,且点在线段上,直线分别交直线于C,D两点.
(1)求点P到椭圆上点的距离的最大值;
(2)求的最小值.
考点2:斜率问题
4.(2024年北京高考数学真题)已知椭圆:,以椭圆的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点且斜率存在的直线与椭圆交于不同的两点,过点和的直线与椭圆的另一个交点为.
(1)求椭圆的方程及离心率;
(2)若直线BD的斜率为0,求t的值.
5.(2022年新高考全国II卷数学真题)已知双曲线的右焦点为,渐近线方程为.
(1)求C的方程;
(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:
①M在上;②;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
考点3:面积及面积比问题
6.(2024年新课标全国Ⅰ卷数学真题)已知和为椭圆上两点.
(1)求C的离心率;
(2)若过P的直线交C于另一点B,且的面积为9,求的方程.
7.(2023年高考全国甲卷数学(理)真题)已知直线与抛物线交于两点,且.
(1)求;
(2)设F为C的焦点,M,N为C上两点,,求面积的最小值.
8.(2023年天津高考数学真题)已知椭圆的左右顶点分别为,右焦点为,已知.
(1)求椭圆的方程和离心率;
(2)点在椭圆上(异于椭圆的顶点),直线交轴于点,若三角形的面积是三角形面积的二倍,求直线的方程.
9.(2022年新高考全国I卷数学真题)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.
(1)求l的斜率;
(2)若,求的面积.
10.(2022年新高考天津数学高考真题)椭圆的右焦点为F、右顶点为A,上顶点为B,且满足.
(1)求椭圆的离心率;
(2)直线l与椭圆有唯一公共点M,与y轴相交于N(N异于M).记O为坐标原点,若,且的面积为,求椭圆的标准方程.
11.(2024年新课标全国Ⅱ卷数学真题)已知双曲线,点在上,为常数,.按照如下方式依次构造点:过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.
(1)若,求;
(2)证明:数列是公比为的等比数列;
(3)设为的面积,证明:对任意正整数,.
考点4:定直线问题
12.(2023年新课标全国Ⅱ卷数学真题)已知双曲线C的中心为坐标原点,左焦点为,离心率为.
(1)求C的方程;
(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.
13.(2022年高考全国甲卷数学(理)真题)设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
(1)求C的方程;
(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
考点5:向量问题
14.(2024年天津高考数学真题)已知椭圆椭圆的离心率.左顶点为,下顶点为是线段的中点,其中.
(1)求椭圆方程.
(2)过点的动直线与椭圆有两个交点.在轴上是否存在点使得.若存在求出这个点纵坐标的取值范围,若不存在请说明理由.
15.(2024年上海夏季高考数学真题)已知双曲线左右顶点分别为,过点的直线交双曲线于两点.
(1)若离心率时,求的值.
(2)若为等腰三角形时,且点在第一象限,求点的坐标.
(3)连接并延长,交双曲线于点,若,求的取值范围.
考点6:共线与平行问题
16.(2023年北京高考数学真题)已知椭圆的离心率为,A、C分别是E的上、下顶点,B,D分别是的左、右顶点,.
(1)求的方程;
(2)设为第一象限内E上的动点,直线与直线交于点,直线与直线交于点.求证:.
考点7:设点设线问题
17.(2024年高考全国甲卷数学(理)真题)已知椭圆的右焦点为,点在上,且轴.
(1)求的方程;
(2)过点的直线交于两点,为线段的中点,直线交直线于点,证明:轴.
考点8:定点定值问题
18.(2023年高考全国乙卷数学(理)真题)已知椭圆的离心率是,点在上.
(1)求的方程;
(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.
19.(2022年高考全国乙卷数学(理)真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
考点
三年考情(2022-2024)
命题趋势
考点1:弦长、周长问题
2023年全国Ⅰ卷
2022年北京卷
2022年浙江卷
从近三年的高考卷的考查情况来看,本节是高考的热点.直线与圆锥曲线综合问题是高考的热点,涉及直线与圆锥曲线关系中的求弦长、面积及弦中点、定点、定值、参数取值范围和最值等问题,多属于解答中的综合问题.近两年难度上有上升的趋势,但更趋于灵活.
考点2:斜率问题
2024年北京卷
2022年全国II卷
考点3:面积及面积比问题
2024年全国Ⅰ卷
2023年全国甲卷(理)
2023年天津卷
2022年全国I卷
2022年天津卷
2024年全国Ⅱ卷
考点4:定直线问题
2023年全国Ⅱ卷
2022年全国甲卷(理)
考点5:向量问题
2024年天津卷
2024年上海卷
考点6:共线与平行问题
2023年北京卷
考点7:设点设线问题
2024年全国甲卷(理)
考点8:定点定值问题
2023年全国乙卷(理)
2022年全国乙卷(理)
相关试卷
这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题04 立体几何(文)(八大考点)(解析版),共26页。
这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题03 导数及其应用(八大考点)(原卷版),共11页。试卷主要包含了已知函数,的极小值点和极大值点,设,函数,给出下列四个结论等内容,欢迎下载使用。
这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题02 函数的概念与基本初等函数Ⅰ(八大考点)(原卷版),共7页。试卷主要包含了若为偶函数,则 等内容,欢迎下载使用。