2025高考数学一轮复习-6.3.1-二项式定理【课件】
展开
这是一份2025高考数学一轮复习-6.3.1-二项式定理【课件】,共50页。PPT课件主要包含了知识梳理,题型探究,二项式定理的应用,随堂练习,对点练习等内容,欢迎下载使用。
(a+b)n= (n∈N*).(1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a+b)n的二项展开式,展开式中一共有 项.(3)二项式系数:各项的系数 (k∈{0,1,2,…,n})叫做二项式系数.
知识点二 二项展开式的通项
(a+b)n展开式的第 项叫做二项展开式的通项,记作Tk+1= .思考 二项式系数与二项展开式中项的系数相同吗?
答案 一般不同.前者仅为 ,而后者是字母前的系数,故可能不同.
1.(a+b)n展开式中共有n项.( )2.在公式中,交换a,b的顺序对各项没有影响.( )3. an-kbk是(a+b)n展开式中的第k项.( )4.(a-b)n与(a+b)n的二项展开式的二项式系数相同.( )5.二项式(a+b)n与(b+a)n的展开式中第k+1项相同.( )
SI KAO BIAN XI PAN DUAN ZHENG WU
一、二项式定理的正用、逆用
∴a=28,b=16,∴a+b=28+16=44.
跟踪训练1 化简:(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).
二、二项展开式的通项的应用
(1)展开式中含x的一次项;
即n2-9n+8=0,解得n=8或n=1(舍去).
(2)展开式中所有的有理项.
所以第3项的系数为240.
(1)第3项的二项式系数及系数;
令3-k=2,解得k=1,所以含x2的项为第2项,且T2=-192x2.
三、求两个多项式积的特定项
例3 (1)已知(1+ax)(1+x)5的展开式中,含x2的项的系数为5,则a等于A.-4 B.-3 C.-2 D.-1
所以a=-1,故选D.
(2)(1+2x)3(1-x)4的展开式中,含x项的系数为A.10 B.-10 C.2 D.-2
解析 (1+2x)3(1-x)4的展开式中含x项的系数是由两个因式相乘而得到的,
跟踪训练3 (x-y)(x+y)8的展开式中x2y7的系数为_____.(用数字作答)
例4 (1)试求2 01910除以8的余数;
解 2 01910=(8×252+3)10.∵其展开式中除末项为310外,其余的各项均含有8这个因数,∴2 01910除以8的余数与310除以8的余数相同.又∵310=95=(8+1)5,其展开式中除末项为1外,其余的各项均含有8这个因数,∴310除以8的余数为1,即2 01910除以8的余数也为1.
(2)求证:32n+2-8n-9(n∈N*)能被64整除.
证明 32n+2-8n-9=(8+1)n+1-8n-9
①式中的每一项都含有82这个因数,故原式能被64整除.
跟踪训练4 (1)已知n∈N*,求证:1+2+22+…+25n-1能被31整除.
显然括号内的数为正整数,故原式能被31整除.
(2)求0.9986的近似值,使误差小于0.001.
且第3项以后(包括第3项)的项的绝对值都远小于0.001,故0.9986=(1-0.002)6≈1-6×0.002=0.988.
1. 的展开式中含x3项的二项式系数为A.-10 B.10 C.-5 D.5
2. 的展开式中的常数项为A.80 B.-80 C.40 D.-40
3.设S=(x-1)3+3(x-1)2+3(x-1)+1,则S等于A.x3 B.-x3 C.(1-x)3 D.(x-1)3
4.若(x+2)n的展开式共有12项,则n=_____.
解析 原式=(2+1)n=3n.
解析 原式=(1-2)n=(-1)n.
5.在(1-x)5-(1-x)6的展开式中,含x3的项的系数是A.-5 B.5 C.-10 D.10
6.若(x+a)10的展开式中,x7的系数为15,则a=___.(用数字填写答案)
所以n2=81,又n∈N*,故n=9.
(2)求展开式中含x3的项,并指出该项的二项式系数.
解 设第k+1项含x3项,
10.已知m,n∈N*,f(x)=(1+x)m+(1+x)n的展开式中x的系数为19,求x2的系数的最小值及此时展开式中x7的系数.
解 由题设知,m+n=19,又m,n∈N*,∴1≤m≤18.
=m2-19m+171.∴当m=9或10时,x2的系数有最小值为81,
11.(多选)对于二项式 (n∈N*),下列判断正确的有A.存在n∈N*,展开式中有常数项B.对任意n∈N*,展开式中没有常数项C.对任意n∈N*,展开式中没有x的一次项D.存在n∈N*,展开式中有一次项
由通项公式可知,当n=4k(k∈N*)和n=4k-1(k∈N*)时,展开式中分别存在常数项和一次项,故选AD.
12.已知2×1010+a(0≤a
相关课件
这是一份第十章 §10.2 二项式定理-2025年新高考数学一轮复习(课件+讲义+练习),文件包含第十章§102二项式定理pptx、第十章§102二项式定理教师版docx、第十章§102二项式定理同步练习docx、第十章§102二项式定理-2025新高考一轮复习讲义学生版docx等4份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
这是一份2025高考数学一轮复习-第49讲-二项式定理及其应用【课件】,共46页。PPT课件主要包含了激活思维,-15,二项式定理,聚焦知识,k+1,n-1,举题说法,-672,-48,答案BC等内容,欢迎下载使用。
这是一份2025年高考数学一轮复习-9.2-二项式定理【课件】,共40页。PPT课件主要包含了必备知识自主排查,核心考点师生共研等内容,欢迎下载使用。