终身会员
搜索
    上传资料 赚现金

    2024-2025学年安徽省利辛县数学九上开学监测试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年安徽省利辛县数学九上开学监测试题【含答案】第1页
    2024-2025学年安徽省利辛县数学九上开学监测试题【含答案】第2页
    2024-2025学年安徽省利辛县数学九上开学监测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年安徽省利辛县数学九上开学监测试题【含答案】

    展开

    这是一份2024-2025学年安徽省利辛县数学九上开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列几组数中,能作为直角三角形三边长度的是( )
    A.6,9,10B.5,12,17C.4,5,6D.1,,
    2、(4分)下列分式中,是最简分式的是( )
    A.B.C.D.
    3、(4分) 小马虎在下面的计算中只作对了一道题,他做对的题目是( )
    A.B.a3÷a=a2
    C.D.=﹣1
    4、(4分)下面关于平行四边形的说法中错误的是( )
    A.平行四边形的两条对角线相等
    B.平行四边形的两条对角线互相平分
    C.平行四边形的对角相等
    D.平行四边形的对边相等
    5、(4分)如图,在菱形中,对角线、相交于点,,,过作的平行线交的延长线于点,则的面积为( )
    A.22B.24C.48D.44
    6、(4分)如图,反比例函数的图象与菱形ABCD的边AD交于点,则函数图象在菱形ABCD内的部分所对应的x的取值范围是( ).
    A.<x<2或-2<x<-B.-4<x<-1
    C.-4<x<-1或1<x<4D.<x<2
    7、(4分)一组数据:﹣3,1,2,6,6,8,16,99,这组数据的中位数和众数分别是( )
    A.6和6B.8和6C.6和8D.8和16
    8、(4分)当取什么值时,分式无意义( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某鞋店销售一款新式女鞋,试销期间对该款不同型号的女鞋销售量统计如下表:
    该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是_____.
    10、(4分)一组数据:5,8,7,6,9,则这组数据的方差是_____.
    11、(4分)若是一个完全平方式,则_________.
    12、(4分)如图,△ABC中,AB=AC,点B在y轴上,点A、C在反比例函数y=(k>0,x>0)的图象上,且BC∥x轴.若点C横坐标为3,△ABC的面积为,则k的值为______.
    13、(4分)计算:.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:如图,在Rt△ABC中,∠C=90°,∠BAC,∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E,F,求证:四边形CEDF是正方形.
    15、(8分)已知a+b=2,ab=2,求的值.
    16、(8分)直线与x轴交于点A,与y轴交于点B,
    (1)求点A、B的坐标,画出直线AB;
    (2)点C在x轴上,且AC=AB,直接写出点C的坐标.
    17、(10分)如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC度数的大小和等边三角形ABC的边长.
    解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.
    (1)△P′PB是 三角形,△PP′A是 三角形,∠BPC= °;
    (2)利用△BPC可以求出△ABC的边长为 .
    如图丙,在正方形ABCD内有一点P,且PA=,BP=,PC=1;
    (3)求∠BPC度数的大小;
    (4)求正方形ABCD的边长.
    18、(10分)平面直角坐标系中,设一次函数的图象是直线.
    (1)如果把向下平移个单位后得到直线,求的值;
    (2)当直线过点和点时,且,求的取值范围;
    (3)若坐标平面内有点,不论取何值,点均不在直线上,求所需满足的条件.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B, 则点B的坐标为_______.
    20、(4分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.
    21、(4分)下表是某校女子羽毛球队队员的年龄分布:
    则该校女子排球队队员年龄的中位数为__________岁.
    22、(4分)计算的结果等于______________.
    23、(4分)已知菱形的两条对角线长分别为1和4,则菱形的面积为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,在中,,,、分别是、边上的高,、交于点,连接.
    (1)求证:;
    (2)求的度数;
    (3)如图2,过点作交于点,探求线段、、的数量关系,并说明理由.
    25、(10分)已知,矩形中,,的垂直平分线分别交于点,垂足为.
    (1)如图1,连接,求证:四边形为菱形;
    (2)如图2,动点分别从两点同时出发,沿和各边匀速运动一周,即点自停止,点自停止.在运动过程中,
    ①已知点的速度为每秒,点的速度为每秒,运动时间为秒,当四点为顶点的四边形是平行四边形时,则____________.
    ②若点的运动路程分别为 (单位:),已知四点为顶点的四边形是平行四边形,则与满足的数量关系式为____________.

    26、(12分)下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:
    ①菜地离小明家多远?小明走到菜地用了多少时间?
    ②小明给菜地浇水用了多少时间?
    ③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    要求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    解:A、,故不是直角三角形,故错误;
    B、,故不是直角三角形,故错误;
    C、,故不是直角三角形,故错误;
    D、 故是直角三角形,故正确.
    故选:D.
    本题考查的是勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
    2、C
    【解析】
    根据最简分式的定义对四个分式分别进行判断即可.
    【详解】
    A、=,不是最简分式;
    B、=,不是最简分式;
    C、,是最简分式;
    D、=,不是最简分式;
    故选C.
    本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.
    3、B
    【解析】
    A.;
    B.;
    C.;
    D..
    故选B.
    4、A
    【解析】
    ∵平行四边形的对边相等、对角相等、对角线互相平分,
    ∴B、C、D说法正确;
    只有矩形的对角线才相等,故A说法错误,
    故选A.
    5、B
    【解析】
    先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.
    【详解】
    解:∵AD∥BE,AC∥DE,
    ∴四边形ACED是平行四边形,
    ∴AC=DE=6,
    在RT△BCO中,BO=,即可得BD=8,
    又∵BE=BC+CE=BC+AD=10,
    ∴△BDE是直角三角形,
    ∴S△BDE=.
    故答案为:B.
    此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.
    6、C
    【解析】
    根据反比例函数的图象是以原点为对称中心的中心对称图形,菱形是以对角线的交点为对称中心的中心对称图形,可得BC边与另一条双曲线的交点坐标,即可得答案.
    【详解】
    ∵反比例函数是以原点为对称中心的中心对称图形,菱形是以对角线的交点为对称中心的中心对称图形,
    ∴BC边与另一条双曲线的交点坐标为(1,-2),(4,),
    ∴图象在菱形ABCD内的部分所对应的x的取值范围是-4<x<-1或1<x<4.
    故选C.
    本题主要考查反比例函数的性质及菱形的性质,反比例函数的图象是以原点为对称中心的中心对称图形;菱形是以对角线的交点为对称中心的中心对称图形;熟练掌握反比例函数及菱形图象的性质是解题关键.
    7、A
    【解析】
    中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数.
    【详解】
    在这一组数据中6是出现次数最多的,故众数是6;
    这组数据已按从小到大的顺序排列,处于中间位置的两个数是6、6,那么由中位数的定义可知,这组数据的中位数是6;
    故选A.
    本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    8、A
    【解析】
    分析:当分式的分母为零时,则分式没有意义.
    详解:根据题意可得:2x-1=0, 解得:x=.故选A.
    点睛:本题主要考查的是分式的性质,属于基础题型.当分式的分母为零时,则分式无意义.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、众数
    【解析】
    平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然想要了解哪种女鞋的销售量最大,那么应该关注那种尺码销的最多,故值得关注的是众数.
    【详解】
    由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.
    故答案为众数.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
    10、2
    【解析】
    先求出平均数,然后再根据方差的计算公式进行求解即可.
    【详解】
    =7,
    =2,
    故答案为:2.
    本题考查了方差的计算,熟记方差的计算公式是解题的关键.
    11、
    【解析】
    利用完全平方公式的结构特征确定出k的值即可
    【详解】
    解:∵是完全平方式,
    ∴k=±30,
    故答案为.
    本题考查了完全平方式,熟练掌握完全平方的特点是解决本题的关键.
    12、.
    【解析】
    先利用面积求出△ABC的高h,然后设出C点的坐标,进而可写出点A的坐标,再根据点A,C都在反比例函数图象上,建立方程求解即可.
    【详解】
    设△ABC的高为h,
    ∵S△ABC=BC•h=3h=,
    ∴h=.
    ∵ ,
    ∴点A的横坐标为 .
    设点C(3,m),则点A(,m+),
    ∵点A、C在反比例函数y=(k>0,x>0)的图象上,
    则k=3m=(m+),
    解得 ,
    则k=3m=,
    故答案为:.
    本题主要考查反比例函数与几何综合,找到A,C坐标之间的关系并能够利用方程的思想是解题的关键.
    13、
    【解析】
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析
    【解析】
    证明:∵∠C=90°,DE⊥BC于点E,DF⊥AC于点F,
    ∴四边形DECF为矩形,
    ∵∠BAC、∠ABC的平分线交于点D,
    ∴DF=DE,
    ∴四边形CFDE是正方形
    15、1
    【解析】
    根据因式分解,首先将整式提取公因式,在采用完全平方公式合,在代入计算即可.
    【详解】
    解:原式=a3b+a2b2+ab3
    =ab(a2+2ab+b2)
    =ab(a+b)2,
    ∵a+b=2,ab=2,
    ∴原式=×2×1=1.
    本题主要考查因式分解的代数计算,关键在于整式的因式分解.
    16、 (1)如图所示见解析;(2)C(1-,0)或C(1+,0)
    【解析】
    分析:令y=0求出与x轴交于点A,令x=0求出与y轴交于点B.然后用两点式画出直线AB即可;
    (2)先利用勾股定理求出AB的长,然后分点C在点A的左侧和右侧两种情况写出点C的坐标即可.
    详解:(1)令y=0,得x=1,∴A(1,0),
    令x=0,得y=2,∴B(0,-2),
    画出直线AB,如图所示:
    (2)C(1-,0)或C(1+,0)
    点睛:本题考查了求一次函数与坐标轴的交点,两点法画函数图像,勾股定理,坐标与图形及分类讨论的数学思想,求出点A与点B的坐标是解(1)的关键,分类讨论是解(2)的关键.
    17、(1)等边 直角 150°;(2);(3)135°;(4) .
    【解析】
    (1)将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,
    (2)过点B作BM⊥AP′,交AP′的延长线于点M,进而求出等边△ABC的边长为 ,问题得到解决.
    (3)求出,根据勾股定理的逆定理求出∠AP′P=90°,推出∠BPC=∠AEB=90°+45°=135°;
    (4)过点B作BF⊥AE,交AE的延长线于点F,求出FE=BF=1,AF=2,关键勾股定理即可求出AB.
    【详解】
    解:(1)∵△ABC是等边三角形,
    ∴∠ABC=60°,
    将△BPC绕点B顺时针旋转60°得出△ABP′,

    ∵∠PBC+∠ABP=∠ABC=60°,
    ∴∠ABP′+∠ABP=∠ABC=60°,
    ∴△BPP′是等边三角形,

    ∵AP′=1,AP=2,
    ∴AP′2+PP′2=AP2,
    ∴∠AP′P=90°,则△PP′A是 直角三角形;
    ∴∠BPC=∠AP′B=90°+60°=150°;
    (2)过点B作BM⊥AP′,交AP′的延长线于点M,

    由勾股定理得:

    由勾股定理得:
    故答案为(1)等边;直角;150;;
    (3)将△BPC绕点B逆时针旋转90°得到△AEB,
    与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,∠ABE=∠PBC,
    ∴∠EBP=∠EBA+∠ABP=∠ABC=90°,
    ∴,
    由勾股定理得:EP=2,

    ∴AE2+PE2=AP2,
    ∴∠AEP=90°,
    ∴∠BPC=∠AEB=90°+45°=135°;
    (4)过点B作BF⊥AE,交AE的延长线于点F;
    ∴∠FEB=45°,
    ∴FE=BF=1,
    ∴AF=2;
    ∴在Rt△ABF中,由勾股定理,得AB=;
    ∴∠BPC=135°,正方形边长为.
    答:(3)∠BPC的度数是135°;
    (4)正方形ABCD的边长是.
    本题主要考查对勾股定理及逆定理,等边三角形的性质和判定,等腰三角形的性质,含30度角的直角三角形的性质,正方形的性质,旋转的性质等知识点的理解和掌握,正确作辅助线并能根据性质进行证明是解此题的关键.
    18、(1);(2)且;(3)
    【解析】
    (1)根据一次函数平移的规律列方程组求解;
    (2)将两点的坐标代入解析式得出方程组,根据方程组可得出a,b的等量关系式,然后根据b的取值范围,可求出a的取值范围,另外注意一次函数中二次项系数2a-3≠0的限制条件;
    (3)先根据点P的坐标求出动点P所表示的直线表达式,再根据直线与平行得出结果.
    【详解】
    解:(1)依题意得

    .
    (2)过点和点

    两式相减得;
    解法一:,
    当时,;
    当时,.
    ,随的增大而增大
    且,
    .
    ,.
    且.
    解法二:

    ,解得.

    ∴.
    且.
    (3)设,
    .
    消去得,
    动点的图象是直线.
    不在上,
    与平行,
    ,.
    本题考查一次函数的图像与性质,以及一次函数平移的规律,掌握基本的性质是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(﹣1,﹣1)
    【解析】
    试题解析:点B的横坐标为1-2=-1,纵坐标为3-4=-1,
    所以点B的坐标是(-1,-1).
    【点睛】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.
    20、1
    【解析】
    设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.
    【详解】
    设购买篮球x个,则购买足球个,
    根据题意得:,
    解得:.
    为整数,
    最大值为1.
    故答案为1.
    本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.
    21、15.
    【解析】
    中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.
    【详解】
    解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.
    故答案为:15
    本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
    22、
    【解析】
    先用平方差公式,再根据二次根式的性质计算可得.
    【详解】
    解:原式=
    =-
    =5-9
    =-4
    故答案为:-4
    本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.
    23、1
    【解析】
    利用菱形的面积等于对角线乘积的一半求解.
    【详解】
    解:菱形的面积=×1×4=1.
    故答案为1.
    本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=ab(a、b是两条对角线的长度).
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见详解;(2)45°;(3)BC+BE=2BG,理由见详解.
    【解析】
    (1)作FH⊥BC于H,由等腰三角形的性质得出∠ABD=∠CBD,BD⊥AC,由角平分线的性质得出EF=HF,∠BEF=90°=∠BHF,证明△BEF≌△BHF,得出BE=BH,证出△BCE是等腰直角三角形,得出∠BCE=45°,BE=EC=BH,证出△CFH是等腰直角三角形,得出CH=HF=EF,即可得出结论;
    (2)由BD平分∠ABC,得到∠ABD的度数,然后求得∠BFE,由直角三角形斜边上的中线定理,可得DE=CD,可得∠DEF=∠DCF=22.5°,然后根据外角定理,即可求得∠BDE;
    (3)由(2)知,∠ADE=∠ABC=45°,由等腰三角形的性质得出∠A=∠ACB=67.5°,由三角形内角和定理得出∠AED=180°-∠A-∠ADE=67.5°,得出∠AED=∠A,证出DA=DE,由等腰三角形的性质得出AG=EG,即可得出结论.
    【详解】
    (1)证明:作FH⊥BC于H,如图所示:
    则∠BHF=90°,
    ∵AB=BC,BD是AC边上的高,
    ∴∠ABD=∠CBD,BD⊥AC,
    ∵CE是AB边上的高,
    ∴CE⊥AB,
    ∴EF=HF,∠BEF=90°=∠BHF,
    在△BEF和△BHF中,
    ∴△BEF≌△BHF(AAS),
    ∴BE=BH,
    ∵∠ABC=45°,
    ∴△BCE是等腰直角三角形,
    ∴∠BCE=45°,BE=EC=BH,
    ∴△CFH是等腰直角三角形,
    ∴CH=HF=EF,
    ∴EC+EF=BH+CH=BC;
    (2)解:如图,
    由(1)知,BD平分∠ABC,∠ABC=45°,
    ∴∠ABF=22.5°,
    ∴∠BFE=90°-22.5°=67.5°,
    ∵AB=BC,∠ABC=45°,
    ∴∠A=,
    在直角三角形ACE中,D是AC中点,
    ∴DE=CD=AD,
    ∴∠DEF=∠DCF=90°-67.5°=22.5°,
    ∴∠BDE=∠BFE-∠DEF=67.5°-22.5°=45°;
    (3)解:BC+BE=2BG,理由如下:如图,
    由(2)得:∠DEF=∠DCF=22.5°
    ∴∠ADE=∠ABC=45°,
    ∵AB=BC,∠ABC=45°,
    ∴∠A=∠ACB=67.5°,
    ∴∠AED=180°-∠A-∠ADE=67.5°,
    ∴∠AED=∠A,
    ∴DA=DE,
    ∵DG⊥AE,
    ∴AG=EG,
    ∵BC=AB=BE+AE=BE+2EG=BG+EG,EG=BG-BE,
    ∴BC=BG+BG-BE,
    ∴BC+BE=2BG.
    本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质与判定、等腰直角三角形的判定与性质、角平分线的性质、直角三角形斜边上的中线等;本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等和等腰直角三角形是解题的关键.
    25、(1)见解析;(2)①;②
    【解析】
    (1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;
    (2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;
    ②分三种情况讨论可知a与b满足的数量关系式.
    【详解】
    (1)证明:∵四边形是矩形,

    ∴,
    ∵垂直平分,垂足为,
    ∴,
    ∴,
    ∴,
    ∴四边形为平行四边形,
    又∵
    ∴四边形为菱形,
    (2)①秒.
    显然当点在上时,点在上,此时四点不可能构成平行四边形;同理点在上时,点在或上,也不能构成平行四边形.因此只有当点在上、点在上时,才能构成平行四边形.
    ∴以四点为顶点的四边形是平行四边形时,
    ∴点的速度为每秒,点的速度为每秒,运动时间为秒,
    ∴,
    ∴,解得
    ∴以四点为顶点的四边形是平行四边形时,秒.
    ②与满足的数量关系式是,
    由题意得,以四点为顶点的四边形是平行四边形时,
    点在互相平行的对应边上,分三种情况:
    i)如图1,当点在上、点在上时,,即,得.
    ii)如图2,当点在上、点在上时,,即,得.
    iii)如图3,当点在上、点在上时,,即,得.
    综上所述,与满足的数量关系式是.



    此题考查线段垂直平分线的性质,菱形的判定及性质,勾股定理,全等三角形的判定及性质,平行四边形的判定及性质,解题中注意分类讨论的思想.
    26、①菜地离小明家1.1千米,小明走到菜地用了15分钟;②小明给菜地浇水用了10分钟;③玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是0.08千米/分钟.
    【解析】
    ①根据函数图象可以直接写出菜地离小明家多远,小明走到菜地用了多少时间;
    ②根据函数图象中的数据可以得到小明给菜地浇水用了多少时间;
    ③根据函数图象中的数据可以得到玉米地离菜地、小明家多远,小明从玉米地走回家平均速度是多少.
    【详解】
    ①由图象可得,
    菜地离小明家1.1千米,小明走到菜地用了15分钟;
    ②25-15=10(分钟),
    即小明给菜地浇水用了10分钟;
    ③2-1.1=0.9(千米)
    玉米地离菜地、小明家的距离分别为0.9千米,2千米,
    小明从玉米地走回家平均速度是2÷(80-55)=0.08千米/分钟.
    本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
    题号





    总分
    得分
    批阅人
    尺码/厘米
    22
    22.5
    23
    23.5
    24
    24.5
    25
    销售量/双
    1
    2
    3
    11
    8
    6
    4
    年龄/岁
    13
    14
    15
    16
    人数
    1
    1
    2
    1

    相关试卷

    2024-2025学年安徽省沿淮教育联盟九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年安徽省沿淮教育联盟九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年安徽省宿州十三校数学九上开学统考试题【含答案】:

    这是一份2024-2025学年安徽省宿州十三校数学九上开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年安徽省桐城市黄岗九上数学开学预测试题【含答案】:

    这是一份2024-2025学年安徽省桐城市黄岗九上数学开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map