2024-2025学年安徽省濉溪县九上数学开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形ABCD中,点E是CD边上一点,,连接AE、BE、BD,且AE、BD交于点F,若,则( )
A.15.5B.16.5C.17.5D.18.5
2、(4分)已知一次函数y=(2m-1)x+1的图象上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,那么m的取值范围是( )
A.m<B.m>C.m<2D.m>-2
3、(4分)下列变形中,正确的是( )
A.B.
C.D.
4、(4分)下而给出四边形ABCD中的度数之比,其中能判定四边形ABCD为平行四边形的是( ).
A.1:2:3:4B.1:2:2:3C.2:2:3:3D.2:3:2:3
5、(4分)若关于的不等式组的整数解共有个,则的取值范围是( )
A.B.C.D.
6、(4分)如图,在菱形ABCD中,两对角线AC、BD交于点O,AC=8,BD=6,当△OPD是以PD为底的等腰三角形时,CP的长为( )
A.2B.C.D.
7、(4分)某医药研究所开发了一种新药,在试验效果时发现,如果成人按规定剂量服用,服药后血液中的含药量逐渐增多,一段时间后达到最大值,接着药量逐步衰减直至血液中含药量为0,每毫升血液中含药量(微克)随时间(小时)的变化如图所示,下列说法:(1)2小时血液中含药量最高,达每毫升6微克.(2)每毫升血液中含药量不低于4微克的时间持续达到了6小时.(3)如果一病人下午6:00按规定剂量服此药,那么,第二天中午12:00,血液中不再含有该药,其中正确说法的个数是()
A.0B.1
C.2D.3
8、(4分)不等式的解集是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将二次函数化成的形式,则__________.
10、(4分)若把分式中的x,y都扩大5倍,则分式的值____________.
11、(4分)比较大小:__________-1.(填“”、“”或“”)
12、(4分)将函数的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是____.
13、(4分)如果多边形的每个内角都等于,则它的边数为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)折叠矩形ABCD,使点D落在BC边上的点F处.
(1)求证:△ABF∽△FCE;
(2)若DC=8,CF=4,求矩形ABCD的面积S.
15、(8分)如图,一块铁皮(图中阴影部分),测得,,,,.求阴影部分面积.
16、(8分)如图1,直线y=﹣x+6与y轴于点A,与x轴交于点D,直线AB交x轴于点B,△AOB沿直线AB折叠,点O恰好落在直线AD上的点C处.
(1)求点B的坐标;
(2)如图2,直线AB上的两点F、G,△DFG是以FG为斜边的等腰直角三角形,求点G的坐标;
(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P、Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.
17、(10分)已知x=﹣1,y=+1,求x2+xy+y2的值.
18、(10分)对于任意三个实数a,b,c,用min|a,b,c|表示这三个实数中最小数,例如:min|-2,0,1|=-2,则:
(1)填空,min|(-2019)0,(-)-2,-|=______,如果min|3,5-x,3x+6|=3,则x的取值范围为______;
(2)化简:÷(x+2+)并在(1)中x的取值范围内选取一个合适的整数代入求值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)因式分解:___.
20、(4分)一次函数y=mx﹣4中,若y随x的增大而减小,则m的取值范围是_____﹣
21、(4分)新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示. 根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么__________(填“李老师”或“王老师”)将被录用.
22、(4分)小刚从家到学校的路程为2km,其中一段是lkm的平路,一段是lkm的上坡路.已知小刚在上坡、平路和下坡的骑车速度分别为akm/h,2akm/h,3akm/h,则小刚骑车从家到学校比从学校回家花费的时间多_____h.
23、(4分)把直线y=x-1向下平移后过点(3,-2),则平移后所得直线的解析式为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,,是上的一点,且,.
求证:≌
25、(10分)如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形;
(2)当AM的值为 时,四边形AMDN是矩形,请你把猜想出的AM值作为已知条件,说明四边形AMDN是矩形的理由.
26、(12分)如图,在中,,,,点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动.
(1)如果点,分别从点,同时出发,那么几秒后,的面积等于6?
(2)如果点,分别从点,同时出发,那么几秒后,的长度等于7?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据已知可得到相似三角形,从而可得到其相似比,根据相似三角形的面积比等于相似比的平方求出△ABF,再根据同高的三角形的面积之比等于底的比得出△BEF的面积,则= +即可求解.
【详解】
解:∵四边形ABCD是平行四边形,
∴DE∥AB,
∴△DFE∽△BFA,
∵DE:EC=2:3,
∴DE:AB=2:5,DF:FB=2:5,
∵=2,根据相似三角形的面积比等于相似比的平方,
∴: =,即==12.5,
∵同高的三角形的面积之比等于底的比,△DEF和△BEF分别以DF、FB为底时高相同,
∴:= DF:FB=2:5,即==5,
∴= +=12.5+5=17.5,
故选C.
本题考查了相似三角形的性质,相似三角形的面积比等于相似比的平方,同高的三角形的面积之比等于底的比,解题的关键是掌握相似三角形的性质.
2、B
【解析】
分析:先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m-1>0,解不等式即可求解.
详解:∵当x1<x2时,有y1<y2
∴y随x的增大而增大
∴2m-1>0,
∴m>.
故选:B.
点睛:本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.
3、A
【解析】
分式的基本性质是分式的分子、分母同时乘以或除以同一个非1的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非1的数或式子,分式的值改变.
【详解】
A、,正确;
B、,错误;
C、,错误;
D、,错误;
故选A.
本题主要考查了分式的性质.注意约分是约去分子、分母的公因式,并且分子与分母相同时约分结果应是1,而不是1.
4、D
【解析】
由于平行四边形的两组对角分别相等,故只有D能判定是平行四边形.其它三个选项不能满足两组对角相等,故不能判定.
【详解】
解:根据平行四边形的两组对角分别相等,可知D正确.
故选:D.
本题考查了平行四边形的判定,运用了两组对角分别相等的四边形是平行四边形这一判定方法.
5、B
【解析】
首先解不等式组,利用m表示出不等式组的解集,然后根据不等式组有4个整数解即可求得m的范围.
【详解】
解:,
解①得x<m,
解②得x≥1.
则不等式组的解集是1≤x<m.
∵不等式组有4个整数解,
∴不等式组的整数解是1,4,5,2.
∴2<m≤3.
故选:B.
本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
6、C
【解析】
过O作OE⊥CD于E.根据菱形的对角线互相垂直平分得出OB,OC的长,AC⊥BD,再利用勾股定理列式求出CD,然后根据三角形的面积公式求出OE.在Rt△OED中,利用勾股定理求出ED.根据等腰三角形三线合一的性质得出PE ,利用CP=CD-PD即可得出结论.
【详解】
过O作OE⊥CD于E.
∵菱形ABCD的对角线AC、BD相交于点O,∴OBBD6=3,OA=OCAC3=2,AC⊥BD,由勾股定理得:CD1.
∵OC×OD=CD×OE,∴12=1OE,∴OE=2.2.在Rt△ODE中,DE===1.3.
∵OD=OP,∴PE=ED=1.3,∴CP=CD-PD=1-1.3-1.3=1.2=.
故选C.
本题考查了菱形的性质,等腰三角形的性质,勾股定理,求出OE的长是解题的关键.
7、D
【解析】
通过观察图象获取信息列出函数解析式,并根据一次函数的性质逐一进行判断即可。
【详解】
解:由图象可得,服药后2小时内,血液中的含药量逐渐增多,在2小时的时候达到最大值,最大值为每毫升6微克,故(1)是正确的;
设当0≤x≤2时,设y=kx,
∴2k=6,解得k=3
∴y=3x
当y=4时,x=
设直线AB的解析式为y=ax+b,得
解得a=- ; b=
∴y=-x+
当y=4时,x=
∴每毫升血液中含药量不低于4微克的时间持续-小时,
故(2)正确
把y=0代入y=-x+得
x=18
前一天下午六点到第二天上午12点时间为18小时,所以(3)正确。
故正确的说法有3个.
故选:D
主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
8、D
【解析】
两边同时乘以3,即可得到答案.
【详解】
解:,解得:;
故选择:D.
本题考查了解不等式,解题的关键是掌握不等式的解法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.
【详解】
解:,
,
.
故答案为:.
本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:.正确利用配方法把一般式化为顶点式是解题的关键.
10、扩大5倍
【解析】
【分析】把分式中的x和y都扩大5倍,分别用5x和5y去代换原分式中的x和y,利用分式的基本性质化简即可.
【详解】把分式中的x,y都扩大5倍得:
=,
即分式的值扩大5倍,
故答案为:扩大5倍.
【点睛】本题考查了分式的基本性质,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.
11、
【解析】
先由,得到>,再利用两个负实数绝对值大的反而小得到结论.
【详解】
解:∵>,
∴,
∴>.
故答案为:
本题考查了实数大小的比较,关键要熟记实数大小的比较方法:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.
12、y=-4x-1
【解析】
根据函数图象的平移规律:上加下减,可得答案.
【详解】
解:将函数y=-4x的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是y=-4x-1.
故答案为:y=-4x-1.
本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键.
13、1
【解析】
先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.
【详解】
∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.
故答案为:1.
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2)4.
【解析】
(1)根据矩形性质和折叠性质证△ABF∽△FCE;(2)在Rt△EFC中,EF2=CE2+CF2,求DE=EF,根据相似三角形性质,求AD=AF=3,S=AD•CD.
【详解】
(1)∵矩形ABCD中,
∠B=∠C=∠D=90°.
∴∠BAF+∠AFB=90°.
由折叠性质,得∠AFE=∠D=90°.
∴∠AFB+∠EFC=90°.
∴∠BAF=∠EFC.
∴△ABF∽△FCE;
(2)由折叠性质,得AF=AD,DE=EF.
设DE=EF=x,则CE=CD﹣DE=8﹣x,
在Rt△EFC中,EF2=CE2+CF2,
∴x2=(8﹣x)2+1.
解得x=2.
由(1)得△ABF∽△FCE,
∴AD=AF=3.
∴S=AD•CD=3×8=4.
考核知识点:矩形折叠问题和相似三角形判定和性质.理解题意熟记性质是关键.
15、24
【解析】
连接AC,首先利用勾股定理的逆定理判断三角形ABC和三角形ACD的形状,再根据阴影部分的面积等于三角形ACD的面积减去三角形ABC的面积即可.
【详解】
连接AC,在中,根据勾股定理,.
.
.
.
.
本题主要考查三角形的勾股定理和勾股定理的逆定理的应用,特别注意三角形逆定理的应用.
16、(1)B(3,0)(2)G(2,2);(3)E(﹣2,0).
【解析】
(1)根据题意可先求出点A和点D的坐标,然后根据勾股定理求出AD,设BC=OB=x,则BD=8-x,在直角三角形BCD中根据勾股定理求出x,即可得到点B的坐标;
(2)由点A和点B的坐标可先求出AB的解析式,然后作GM⊥x轴于M,FN⊥x轴于N,求证△DMG≌△FND,从而得到GM=DN,DM=FN,又因为G、F在直线AB上,进而可求点G的坐标;
(3)设点Q(a,-a+6),则点P的坐标为(a,-a+6),据此可求出PQ,作QH⊥x轴于H,可以把QH用a表示出来,在直角三角形中,根据勾股定理也可以用a把QH表示出来,从而求出a的值,进而求出点E的坐标.
【详解】
解:(1)对于直线y=-x+6,令x=0,得到y=6,可得A(0,6),
令y=0,得到x=8,可得D(8,0),
∴AC=AO=6,OD=8,AD==10,
∴CD=AD﹣AC=4,设BC=OB=x,则BD=8﹣x,
在Rt△BCD中,∵BC2+CD2=BD2,
∴x2+42=(8﹣x)2,
∴x=3,
∴B(3,0).
(2)设直线AB的解析式为y=kx+6,
∵B(3,0),
∴3k+6=0,
∴k=﹣2,
∴直线AB的解析式为y=﹣2x+6,
作GM⊥x轴于M,FN⊥x轴于N,
∵△DFG是等腰直角三角形,
∴DG=FD,∠1=∠2,∠DMG=∠FND=90°,
∴△DMG≌△FND(AAS),
∴GM=DN,DM=FN,设GM=DN=m,DM=FN=n,
∵G、F在直线AB上,
∴ ,
解得 ,
∴G(2,2).
(3)如图,设Q(a,﹣a+6),
∵PQ∥x轴,且点P在直线y=﹣2x+6上,
∴P(a,﹣a+6),
∴PQ=a,作QH⊥x轴于H,
∴DH=a﹣8,QH=a﹣6,
∴=,
由勾股定理可知:QH:DH:DQ=3:4:5,
∴QH=DQ=PQ=a,
∴a=a﹣6,
∴a=16,
∴Q(16,﹣6),P(6,﹣6),
∵ED∥PQ,ED=PQ,D(8,0),
∴E(﹣2,0).
一次函数解析式的综合运用是本题的考点,此题综合性比较强,用到了勾股定理、全等三角形的判定和性质等知识点,能作出辅助线并熟练运用所学知识是解题的关键.
17、1
【解析】
根据x、y的值,可以求得题目中所求式子的值.
【详解】
解:∵x=﹣1,y=+1,
∴x+y=2,xy=2,
∴x2+xy+y2=(x+y)2﹣xy=(2)2﹣2=12﹣2=1.
本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.
18、(1)-,-1≤x≤2;(2),x=0时,原式=1
【解析】
(1)根据零指数幂的性质和负整数指数幂的性质化简,利用新定义列出不等式组,可以得到所求式子的值和x的取值范围;
(2)根据分式的加法和除法可以化简题目中的式子,然后根据(1)中x的取值范围,选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.
【详解】
(1)∵(-2019)0=1,(-)-2=4,
∴min|(-2019)0,(-)-2,-|=-,
∵min|3,5-x,3x+6|=3,
∴,得-1≤x≤2,
故答案为:-,-1≤x≤2;
(2)÷(x+2+)
=
=
=
=,
∵-1≤x≤2,且x≠-1,1,2,
∴当x=0时,原式==1.
本题考查分式的化简求值、零指数幂、负整数指数幂、解一元一次不等式组,解答本题的关键是明确它们各自的解答方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2a(a-2)
【解析】
20、m<1
【解析】
利用一次函数图象与系数的关系列出关于m的不等式m<1即可.
【详解】
∵一次函数y=mx﹣4中,y随x的增大而减小,
∴m<1,
故答案是:m<1.
本题主要考查一次函数图象与系数的关系.解答本题的关键是注意理解:k>1时,直线必经过一、三象限,y随x的增大而增大;k<1时,直线必经过二、四象限,y随x的增大而减小.
21、李老师.
【解析】
利用加权平均数的计算方法求出李老师、王老师的最后总成绩,比较得出答案.
【详解】
解:李老师总成绩为:90×+85×=87,
王老师的成绩为:95×+80×=86,
∵87>86,
∴李老师成绩较好,
故答案为:李老师.
考查加权平均数的计算方法,以及利用加权平均数对事件作出判断,理解权对平均数的影响.
22、
【解析】
本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程、速度所用时间不变.题中的等量关系是:从家到学校的路程为2千米;去时上坡时间+平路时间=从家到学校的总时间;回时下坡时间+平路时间=从学校回家花费的时间,据此可列式求解.
【详解】
小刚骑车从家到学校比从学校回家花费的时间多:( )-()=-=h,
故答案为:
本题考查列代数式,解答本题的关键读懂题意,找出合适的数量关系.
23、y=x-2
【解析】
解:设直线向下平移了h个单位,y=x-2-h,过(3,-2),所以-2=3-2-h
所以h=-4
所以y=x-2
故答案为:y=x-2.
本题考查一次函数图象左右平移,上下平移方法,口诀“左加右减,上加下减”.
y=kx+b 左移2个单位,y=k(x+2)+b;
y=kx+b 右移2个单位,y=k(x-2)+b;
y=kx+b 上移2个单位,y=kx+b+2;
y=kx+b 下移2个单位,y=kx+b-2.
二、解答题(本大题共3个小题,共30分)
24、证明见解析.
【解析】
此题比较简单,根据已知条件,利用直角三角形的HL可以证明题目结论.
【详解】
证明:∵∠1=∠2
∴DE=CE
∵∠A=∠B=90°
∴AE=BC
∴Rt△ADE≌Rt△BEC(HL)
此题考查直角三角形全等的判定,解题关键在于掌握判定定理
25、(1)见解析(2)当AM=2时,说明四边形是矩形
【解析】
(1)根据菱形的性质可得AB∥CD,根据两直线平行,内错角相等可得∠NDE=∠MAE,根据对顶角相等可得∠DEN=∠AEM,根据中点的定义求出DE=AE,然后利用“角边角”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=AM,然后利用一组对边平行且相等的四边形是平行四边形证明;
(2)首先证明△AEM是等边三角形,进而得到AE=ED=EM,利用三角形一边上的中线等于斜边一半判断出△AMD是直角三角形,进而得出四边形AMDN是矩形.
【详解】
(1)∵点E是AD边的中点,
∴AE=ED,
∵AB∥CD,
∴∠NDE=∠MAE,
在△NDE和△MAE中,
,
∴△NDE≌△MAE(ASA),
∴ND=AM,
∵ND∥AM,
∴四边形AMDN是平行四边形;
(2)当AM=2时,说明四边形是矩形.
∵E是AD的中点,
∴AE=2,
∵AE=AM,∠EAM=60°,
∴△AME是等边三角形,
∴AE=EM,
∴AE=ED=EM,
∴∠AMD=90°,
∵四边形ABCD是菱形,
故当AM=2时,四边形AMDN是矩形.
本题考查矩形的判定、菱形的性质和平行四边形的判定,解题的关键是掌握矩形的判定、菱形的性质和平行四边形的判定.
26、(1)出发1秒后,的面积等于6;(2)出发0秒或秒后,的长度等于7.
【解析】
(1)设秒后,的面积等于6,根据路程=速度×时间,即可用x表示出AP、BQ和BP的长,然后根据三角形的面积公式列一元二次方程,并解方程即可;
(2)设秒后,的长度等于7,根据路程=速度×时间,即可用y表示出AP、BQ和BP的长,利用勾股定理列一元二次方程,并解方程即可.
【详解】
解: (1)设秒后,的面积等于6,
∵点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动
∴,
∴
则有
∴(此时2×6=12>BC,故舍去)
答:出发1秒后,的面积等于6
(2)设秒后,的长度等于7
∵点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动
∴,
∴
解得
答:出发0秒或秒后,的长度等于7.
此题考查的是一元二次方程的应用,掌握几何问题中的等量关系和行程问题公式是解决此题的关键.
题号
一
二
三
四
五
总分
得分
测试项目
测试成绩
李老师
王老师
笔试
90
95
面试
85
80
2024-2025学年安徽省沿淮教育联盟九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年安徽省沿淮教育联盟九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省淮南市西部地区数学九上开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年安徽省淮南市西部地区数学九上开学学业水平测试模拟试题【含答案】,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省和县九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年安徽省和县九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。