


2024-2025学年北京市海淀区中学关村中学数学九年级第一学期开学考试试题【含答案】
展开
这是一份2024-2025学年北京市海淀区中学关村中学数学九年级第一学期开学考试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是( )
A.AB=36mB.MN∥ABC.MN=CBD.CM=AC
2、(4分)已知一组数据,,,,的平均数为5,则另一组数据,,,,的平均数为( )
A.4B.5C.6D.10
3、(4分)下列函数中,y随x的增大而减小的函数是( )
A.B.C.D.
4、(4分)关于x的不等式的解集为x>3,那么a的取值范围为( )
A.a>3B.a<3C.a≥3D.a≤3
5、(4分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,如果EF=2,那么菱形ABCD周长是( )
A.4B.8C.12D.16
6、(4分)下列运算正确的是( )
A.=2B.=±2C.D.
7、(4分)一种微粒的半径是4×10-5米,用小数表示为( )
A.0.000004米B.0.000004米C.0.00004米D.0.0004米
8、(4分)下列窗花图案中,是轴对称图形的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图在中,,,,是边上的两点,且满足,若,,,的长是__________.
10、(4分)若代数式有意义,则的取值范围为__________.
11、(4分)在一只不透明的袋子中装有2个红球、3个绿球和5个白球,这些球除颜色外都相同,摇匀后,从袋子中任意摸出1个球,摸出白球可能性_________摸出红球可能性.(填“等于”、“小于”或“大于”)
12、(4分)如图,的对角线、交于点,则图中成中心对称的三角形共有______对.
13、(4分)如图,在平面直角坐标系xOy中,A是双曲线在第一象限的分支上的一个动点,连接AO并延长与这个双曲线的另一分支交于点B,以AB为底边作等腰直角三角形ABC,使得点C位于第四象限。
(1)点C与原点O的最短距离是________;
(2)没点C的坐标为(,点A在运动的过程中,y随x的变化而变化,y关于x的函数关系式为________。
三、解答题(本大题共5个小题,共48分)
14、(12分)为了满足市场需求,某厂家生产A、B两种款式的环保购物袋,每天共生产5000个,两种购物袋的成本和售价如下表:
设每天生产A种购物袋x个,每天共获利y元.
(1)求y与x的函数解析式;
(2)如果该厂每天最多投入成本12000元,那么每天最多获利多少元?
15、(8分)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E,F.
(1)若CE=4,CF=3,求OC的长.
(2)连接AE、AF,问当点O在边AC上运动到什么位置时,四边形AECF是矩形?请说明理由.
16、(8分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.
17、(10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG∥DB,交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90,求证:四边形DEBF是菱形.
18、(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若某人沿坡度在的斜坡前进则他在水平方向上走了_____
20、(4分)甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)
21、(4分)正方形的边长为,则这个正方形的对角线长为_________.
22、(4分)函数y=kx+b的图象平行于直线y=-2x,且与y轴交于点(0,3),则k=______,b=____.
23、(4分)已知A(﹣2,2),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_____
二、解答题(本大题共3个小题,共30分)
24、(8分)某校分别于2015年、2016年春季随机调查相同数量的学生,对学生做家务的情况进行调查(开展情况分为“基本不做”、“有时做”、“常常做”、“每天做”四种),绘制成部分统计图如下.
请根据图中信息,解答下列问题:
(1)a=______%,b=______%,“每天做”对应阴影的圆心角为______°;
(2)请你补全条形统计图;
(3)若该校2016年共有1200名学生,请你估计其中“每天做”家务的学生有多少名?
25、(10分)如图,在矩形ABCD中,AB=8,BC=6,点P、点E分别是边AB、BC上的动点,连结DP、PE.将 △ADP 与 △BPE分别沿DP与PE折叠,点A与点B分别落在点A′,B′处.
(1) 当点P运动到边AB的中点处时,点A′与点B′重合于点F处,过点C作CK⊥EF于K,求CK的长;
(2) 当点P运动到某一时刻,若P,A',B'三点恰好在同一直线上,且A'B'=4 ,试求此时AP的长.
26、(12分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点,试说明四边形AECF是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
通过构造相似三角形即可解答.
【详解】
解:根据题意可得在△ABC中△ABC∽△MNC,
又因为M.N是AC,BC的中点,
所以相似比为2:1,MN//AB,B正确, CM=AC,D正确.
即AB=2MN=36,A正确;
MN=AB,C错误.
故本题选C.
本题考查相似三角形的判定与运用,熟悉掌握是解题关键.
2、C
【解析】
根据平均数的性质,所有数之和除以总个数即可得出平均数.
【详解】
依题意得:++++
所以平均数为6.
故选C.
考查算术平均数,掌握平均数的计算方法是解题的关键.
:
3、C
【解析】
根据一次函数的性质,k<0,y随x的增大而减小,找出各选项中k值小于0的选项即可.
【详解】
解:A、B、D选项中的函数解析式k值都是正数,y随x的增大而增大,
C选项中,k=<0,y随x的增大而减少.
故选:C.
本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
4、D
【解析】
分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.
详解:解不等式2(x-1)>4,得:x>3,
解不等式a-x<0,得:x>a,
∵不等式组的解集为x>3,
∴a≤3,
故选D.
点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
5、D
【解析】
解:∵菱形ABCD中,E,F分别是AB,AC的中点,EF=2,
∴BC=2EF=2×2=1.即AB=BC=CD=AD=1.
故菱形的周长为1BC=1×1=2.
故答案为2.
本题考查三角形中位线定理;菱形的性质.
6、A
【解析】
根据,二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变进行计算即可.
【详解】
解:A、,故原题计算正确
B、,故原题计算错误
C、和不是同类二次根式,不能合并,故原题计算错误
D、,故原题计算错误
故选:A
本题考查了二次根式的化简,以及简单的加减运算,认真计算是解题的关键.
7、C
【解析】
小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
4×10-5= 0.00004
故答案为:C
考查了科学计数法,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).
8、A
【解析】
根据轴对称图形的概念求解.
【详解】
解:A、是轴对称图形,符合题意;
B、不是轴对称图形,不合题意;
C、不是轴对称图形,不合题意;
D、不是轴对称图形,不合题意.
故选:A.
本题考查了轴对称图形的识别,熟练掌握基本概念是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如下图,利用等腰直角三角形的性质得,利用旋转的性质得,,则,在中利用勾股定理可计算出,然后再根据证明三角形即可得到.
【详解】
以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如图
按顺时针方向旋转得到
在中,
将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处)
,
,即
在和中
∴.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质和勾股定理.
10、且.
【解析】
根据二次根式和分式有意义的条件进行解答即可.
【详解】
解:∵代数式有意义,
∴x≥0,x-1≠0,
解得x≥0且x≠1.
故答案为x≥0且x≠1.
本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.
11、大于
【解析】
分别求出摸到白球与摸到红球的概率,比较这两个概率即可得答案.
【详解】
∵共有球:2+3+5=10个,
∴P白球==,P红球==,
∵>,
∴摸出白球可能性大于摸出红球可能性.
故答案为:大于
本题考查概率的求法,概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键.
12、4
【解析】
▱ABCD是中心对称图形,根据中心对称图形的性质,对称点的连线到对称中心的距离相等,即对称中心是对称点连线的中点,并且中心对称图形被经过对称中心的直线平分成两个全等的图形,据此即可判断.
【详解】
解:图中成中心对称的三角形有△AOD和△COB,△ABO与△CDO,△ACD与△CAB,△ABD和△CDB共4对.
本题主要考查了平行四边形是中心对称图形,以及中心对称图形的性质.掌握中心对称图形的特点是解题的关键.
13、
【解析】
(1)先根据反比例函数的对称性及等腰直角三角形的性质可得OC=OA=OB,利用勾股定理求出AO的长为,再配方得,根据非负性即可求出OA的最小值,进而即可求解;
(2)先证明△AOD≌△COE可得AD=CE,OD=OE,然后根据点C的坐标表示出A的坐标,再由反比例函数的图象与性质即可求出y与x 的函数解析式.
【详解】
解:(1)连接OC,过点A作AD⊥y轴,如图,
,
∵A是双曲线在第一象限的分支上的一个动点,延长AO交另一分支于点B,
∴OA=OB,
∵△ABC是等腰直角三角形,
∴OC=OA=OB,
∴当OA的长最短时,OC的长为点C与原点O的最短距离,
设A(m,),
∴AD=m,OD=,
∴OA===,
∵,
∴当时,OA=为最小值,
∴点C与原点O的最短距离为.
故答案为;
(2)过点C作x轴的垂线,垂足为E,如上图,
∴∠ADO=∠CEO=90°,
∵△ABC是等腰直角三角形,
∴OC=OA=OB,OC⊥AB,
∴∠COE+∠AOE=90°,
∵∠AOD+∠AOE=90°,
∴∠AOD=∠COE,
∴△AOD≌△COE(AAS),
∴AD=CE,OD=OE,
∵点C的坐标为(x,y)(x>0),
∴OE=x,CE=-y,
∴OD=x,AD=-y,
∴点A的坐标为(-y,x),
∵A是双曲线第一象限的一点,
∴,即,
∴y关于x的函数关系式为(x>0).
故答案为(x>0).
本题考查了反比例函数的综合应用及等腰直角三角形的性质,全等三角形的判定与性质.利用配方法求出AO的长的最小值是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1) ;(2)2400元.
【解析】
(1)根据题意可得A种塑料袋每天获利(2.4-2)x,B种塑料袋每天获利(3.6-3)(5000-x),共获利y元,列出y与x的函数关系式:y=(2.4-2)x+(3.6-3)(5000-x).
(2)根据题意得2x+3(4500-x)≤10000,解出x的范围.得出y随x增大而减小.
【详解】
(1)由题意得:=
(2)由题意得:≤12000
解得:≥3000
在函数中,<0
∴随的增大而减小
∴当=3000时,每天可获利最多,最大利润=2400
∴该厂每天最多获利2400元.
此题主要考查了一次函数的应用以及不等式组解法,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.
15、 (1)2.5: (2)见解析.
【解析】
(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可.
【详解】
(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠OCE=∠BCE,∠OCF=∠DCF,
∵EF∥BC,
∴∠OEC=∠BCE,∠OFC=∠DCF,
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴OE=OC,OF=OC,
∴OE=OF;
∵∠OCE+∠BCE+∠OCF+∠DCF=180°,
∴∠ECF=90°,
在Rt△CEF中,由勾股定理得:EF==5,
∴OC=OE=EF=2.5;
(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:
连接AE、AF,如图所示:
当O为AC的中点时,AO=CO,
∵EO=FO,
∴四边形AECF是平行四边形,
∵∠ECF=90°,
∴平行四边形AECF是矩形.
本题考查了矩形的判定、平行线的性质、等腰三角形的判定与性质,掌握这些判定及性质是解答本题的关键.
16、,2
【解析】
试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.
试题解析:原式=·=
当a=0时,原式==2.
考点:分式的化简求值.
17、(1)证明见解析;(2)证明见解析.
【解析】
(1)在□ABCD中,AB∥CD,AB=CD,
∵E、F分别为边AB、CD的中点,
∴DF=CD,BE=AB,
∴DF=BE, DF∥BE,
∴四边形BEDF为平行四边形,
∴DE∥BF;
(2)∵AG∥DB,
∴∠G=∠DBC=90°,
∴△DBC为直角三角形,
又∵F为边CD的中点,
∴BF=CD=DF,
又∵四边形BEDF为平行四边形,
∴四边形BEDF为菱形.
本题主要考查了平行四边形的性质、菱形的判定,直角三角形中斜边中线等于斜边一半,解题的关键是掌握和灵活应用相关性质.
18、(1)见解析(2)BD=2
【解析】
解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=ED,∠DEA=∠C=90°.
∵在Rt△ACD和Rt△AED中,,
∴Rt△ACD≌Rt△AED(HL).
(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.
∵DE⊥AB,∴∠DEB=90°.
∵∠B=30°,∴BD=2DE=2.
(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.
(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据坡度的概念得到∠A=45°,根据正弦的概念计算即可.
【详解】
如图,
斜坡的坡度,
,
,
故答案为:.
本题考查了解直角三角形的应用,解答本题的关键是理解坡度及坡角的定义,熟练勾股定理的表达式.
20、不公平.
【解析】
试题分析:先根据题意画出树状图,然后根据概率公式求解即可.
画出树状图如下:
共有9种情况,积为奇数有4种情况
所以,P(积为奇数)=
即甲获胜的概率是
所以这个游戏不公平.
考点:游戏公平性的判断
点评:解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.
21、1
【解析】
如图(见解析),先根据正方形的性质可得,再利用勾股定理即可得.
【详解】
如图,四边形ABCD是边长为正方形
则
由勾股定理得:
即这个正方形的两条对角线相等,长为1
故答案为:1.
本题考查了正方形的性质、勾股定理,掌握理解正方形的性质是解题关键.
22、 -2 3
【解析】试题解析:∵y=kx+b的图象平行于直线y=−2x,
∴k=−2,
则直线y=kx+b的解析式为y=−2x+b,
将点(0,3)代入得:b=3,
故答案为:−2,3.
23、(-0.4,0)
【解析】
点A(-2,2)关于x轴对称的点A'(-2,-2),求得直线A'B的解析式,令y=0可求点P的横坐标.
【详解】
解:点A(-2,2)关于x轴对称的点A'(-2,-2),
设直线A'B的解析式为y=kx+b,
把A'(-2,-2),B(2,3)代入,可得
,解得 ,
∴直线A'B的解析式为y=x+,
令y=0,则0=x+,
解得x=-0.4,
∴点P的坐标为(-0.4,0),
故答案为:(-0.4,0).
本题综合考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.
二、解答题(本大题共3个小题,共30分)
24、(1)19,20,144;(2)见解析;(3)480
【解析】
(1)根据统计图可以求得而2016年抽调的学生数,从而可以求得a、b的值以及“每天做”对应的圆心角的度数;
(2)根据统计图可以求得“有时做”、“常常做”的人数,从而可以将条形统计图补充完整;
(3)根据统计图可以估计“每天做”家务的学生的人数.
【详解】
解:(1)由题意可得,
2016年抽调的学生数为:80÷40%=200,
则a=38÷200×100%=19%,
∴b=1-19%-21%-40%=20%,
“每天做”对应的圆心角为:360°×40%=144°,
故答案为:19,20,144;
(2)“有时做”的人数为:20%×200=40,
“常常做”的人数为:200×21%=42,
补全的条形统计图如下图所示,
(3)由题意可得,
“每天做”家务的学生有:1200×40%=480(人),
即该校每天做家务的学生有480人.
本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答问题.
25、(1);(2),PA的长为2或1.
【解析】
(1)由折叠的性质可得E ,F,D三点在同一直线上,在Rt△DEC中,根据勾股定理可求出BE,CE,DE的长,再根据面积法即可求出CK的值;
(2)分两种情况进行讨论:根据A′B′=4列出方程求解即可.
【详解】
⑴如图,
∵四边形ABCD为矩形,将 △ADP 与 △BPE分别沿DP与PE折叠,
∴∠PFD=∠PFE=90°,
∴∠PFD+∠PFE=180°,即:E ,F,D三点在同一直线上.
设BE=EF=x,则EC=1-x,
∵DC=AB=8, DF=AD=1,
在Rt△DEC中,∵DE=DF+FE=1+x, EC=1-x, DC=8,
∴(1+x)2=(1-x)2+82,
计算得出x=,即BE=EF=,
∴DE=, EC=,
∵S△DCE=DC∙CE=DECK,
∴CK=;
⑵①如图2中,设AP=x,则PB=8-x,
由折叠可知:PA′=PA=x , PB′=PB=8-x,
∵A′B′=4,
∴8-x-x=4,
∴x=2, 即AP=2.
②如图3中,
∵A′B′=4,
∴x-(8-x)=4, ∴x=1, 即AP=1.
综上所述,PA的长为2或1.
此题是四边形综合题,主要考查了矩形的性质,折叠问题,勾股定理.熟练运用勾股定理列方程求解是解本题的关键.
26、见解析
【解析】
平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为:平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD.
∵点E、F分别是OB、OD的中点,
∴OE=OF.
∴四边形AECF是平行四边形.(方法不唯一)
题号
一
二
三
四
五
总分
得分
批阅人
成本(元/个)
售价 (元/个)
2
2.4
3
3.6
相关试卷
这是一份2024-2025学年北京市顺义区顺义区张镇中学数学九年级第一学期开学综合测试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年北京师范大朝阳附属中学数学九年级第一学期开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年北京101中学数学九年级第一学期开学考试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
