终身会员
搜索
    上传资料 赚现金
    2024-2025学年福建省厦门市金尚中学数学九上开学学业水平测试模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年福建省厦门市金尚中学数学九上开学学业水平测试模拟试题【含答案】01
    2024-2025学年福建省厦门市金尚中学数学九上开学学业水平测试模拟试题【含答案】02
    2024-2025学年福建省厦门市金尚中学数学九上开学学业水平测试模拟试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年福建省厦门市金尚中学数学九上开学学业水平测试模拟试题【含答案】

    展开
    这是一份2024-2025学年福建省厦门市金尚中学数学九上开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若关于的方程的解为正数,则的取值范围是( )
    A.且B.且 C. 且 D.
    2、(4分)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过
    A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限
    3、(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AD,AC的中点,若CB=4,则EF的长度为( )
    A.2B.1C.D.2
    4、(4分)下列图形既是中心对称图形又是轴对称图形的是( )
    A.B.C.D.
    5、(4分)已知△ABC,AB=5,BC=12,AC=13,点P是AC上一个动点,则线段BP长的最小值是( )
    A.B.5C.D.12
    6、(4分)如图,在Rt△ABC中,∠ACB=90°.AC=BC.边AC落在数轴上,点A表示的数是1,点C表示的数是3,负半轴上有一点B₁,且AB₁=AB,点B₁所表示的数是( )
    A.-2B.-2C.2-1D.1-2
    7、(4分)下列命题正确的是().
    A.任何事件发生的概率为1
    B.随机事件发生的概率可以是任意实数
    C.可能性很小的事件在一次实验中有可能发生
    D.不可能事件在一次实验中也可能发生
    8、(4分)如图,把长方形纸片纸沿对角线折叠,设重叠部分为△,那么,下列说法错误的是( )
    A.△是等腰三角形,
    B.折叠后∠ABE和∠CBD一定相等
    C.折叠后得到的图形是轴对称图形
    D.△EBA和△EDC一定是全等三角形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一次函数y=-3x+a的图像与两坐标轴所围成的三角形面积是6,则a的值为_________.
    10、(4分)①_________;②_________;③_________.
    11、(4分)将5个边长为1的正方形按照如图所示方式摆放,O1,O2,O3,O4,O5是正方形对角线的交点,那么阴影部分面积之和等于________.
    12、(4分)化简的结果是______
    13、(4分)在数学课上,老师提出如下问题:
    如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.
    小明的折叠方法如下:
    如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.
    老师说:“小明的作法正确.”
    请回答:小明这样折叠的依据是______________________________________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4)和点B(m,﹣2),
    (1)求这两个函数的关系式;
    (2)观察图象,写出使得>ax+b成立的自变量x的取值范围;
    (3)过点A作AC⊥x轴,垂足为C,在平面内有点D,使得以A,O,C,D四点为顶点的四边形为平行四边形,直接写出符合条件的所有D点的坐标.
    15、(8分)解下列不等式组,并把它的解集表示在数轴上:
    16、(8分)如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中点,连结CM.
    (1)求证:CM⊥EF.
    (2)设正方形ABCD的边长为2,若五边形BCDEF的面积为,请直接写出CM的长.
    17、(10分)近几年,随着电子产品的广泛应用,学生的近视发生率出现低龄化趋势,引起了相关部门的重视.某区为了了解在校学生的近视低龄化情况,对本区7-18岁在校近视学生进行了简单的随机抽样调查,并绘制了以下两幅不完整的统计图.
    请根据图中信息,回答下列问题:
    (1)这次抽样调查中共调查了近视学生 人;
    (2)请补全条形统计图;
    (3)扇形统计图中10-12岁部分的圆心角的度数是 ;
    (4)据统计,该区7-18岁在校学生近视人数约为10万,请估计其中7-12岁的近视学生人数.
    18、(10分)如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.
    (1)求证:四边形CDEF是菱形;
    (2)若AB=2,BC=3,∠A=120°,求BP的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为 .
    20、(4分)将正比例函数y= -x的图象向上平移,则平移后所得图象对应的函数解析式可能是______________(答案不唯一,任意写出一个即可).
    21、(4分).在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是____________.
    22、(4分)如图,矩形全等于矩形,点在上.连接,点为的中点.若,,则的长为__________.
    23、(4分)关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在四边形ABCD中,AB=AC,BD=DC,BE//DC,请仅用无刻度的直尺按下列要求画图.
    (1)在图1中,画一个以AB为边的直角三角形;
    (2)在图2中,画一个菱形.
    25、(10分)如图,在四边形ABCD中,AD∥BC,∠ADC=90°,BC=8,DC=6,AD=10,动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动,设运动的时间为t(秒)。
    (1)当点P运动t秒后,AP=____________(用含t的代数式表示);
    (2)若四边形ABQP为平行四边形,求运动时间t;
    (3)当t为何值时,△BPQ是以BQ或BP为底边的等腰三角形;
    26、(12分)菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.
    (1)如图1,求∠BGD的度数;
    (2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;
    (3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=4,求菱形ABCD的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    先求得方程的解,再根据x>0,得到关a的不等式并求出a的取值范围.
    【详解】
    解:去分母得,2x+a=-x+2
    解得
    ∵分母x-2≠0即x≠2
    解得,a≠-1
    又∵x>0
    解得,a<2
    则a的取值范围是a<2且a≠-1.
    故选:B
    此题主要考查了分式方程的解,要熟练掌握,解答此类问题的关键是“转化思想”的应用,并要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
    2、D
    【解析】
    ∵k+b=-5,kb=6,∴kb是一元二次方程的两个根.
    解得,或.∴k<1,b<1.
    一次函数的图象有四种情况:
    ①当,时,函数的图象经过第一、二、三象限;
    ②当,时,函数的图象经过第一、三、四象限;
    ③当,时,函数的图象经过第一、二、四象限;
    ④当,时,函数的图象经过第二、三、四象限.
    ∴直线y=kx+b经过二、三、四象限.故选D.
    3、A
    【解析】
    根据直角三角形的性质求出CD,根据三角形中位线定理计算即可.
    【详解】
    解:∵∠ACB=90°,∠A=30°,
    ∴AB=2BC=8,
    ∵∠ACB=90°,D为AB的中点,
    ∴CD=AB=4,
    ∵E,F分别为AD,AC的中点,
    ∴EF=CD=2,
    故选:A.
    本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    4、A
    【解析】
    根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.
    【详解】
    A. 是轴对称图形,也是中心对称图形,故此选项正确;
    B. 不是轴对称图形,是中心对称图形,故此选项错误;
    C. 不是轴对称图形,也不是中心对称图形,故此选项错误;
    D. 是轴对称图形,不是中心对称图形,故此选项错误;
    故选:A.
    本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    5、A
    【解析】
    解:∵AB=5,BC=12,AC=13,∴AB2+BC2=169=AC2,∴△ABC是直角三角形,当BP⊥AC时,BP最小,∴线段BP长的最小值是:13BP=5×12,解得:BP=.故选A.
    点睛:本题主要考查勾股定理的逆定理以及直角三角形面积求法,关键是熟练运用勾股定理的逆定理进行分析.
    6、D
    【解析】
    先求出AC的长度,再根据勾股定理求出AB的长度,然后根据B1到原点的距离是2-1,即可得到点B1所表示的数.
    【详解】
    解:根据题意,AC=3-1=2,
    ∵∠ACB=90°,AC=BC,
    ∴,
    ∴B1到原点的距离是2-1.
    又∵B′在原点左侧,
    ∴点B1表示的数是1-2.
    故选D.
    本题主要考查了实数与数轴,勾股定理,求出AB的长度是解题的关键.解题时注意实数与数轴上的点是一一对应关系.
    7、C
    【解析】
    根据随机事件、不可能事件的定义和概率的性质判断各选项即可.
    【详解】
    A中,只有必然事件概率才是1,错误;
    B中,随机事件的概率p取值范围为:0<p<1,错误;
    C中,可能性很小的事件,是有可能发生的,正确;
    D中,不可能事件一定不发生,错误
    故选:C
    本题考查事件的可能性,注意,任何事件的概率P一定在0至1之间.
    8、B
    【解析】
    根据长方形的性质得到∠BAE=∠DCE=90°,AB=CD,再由对顶角相等可得∠AEB=∠CED,推出△EBA≌△EDC,根据等腰三角形的性质即可得到结论,依此可得A、C、D正确;无法判断∠ABE和∠CBD是否相等.
    【详解】
    ∵四边形ABCD为长方形
    ∴∠BAE=∠DCE=90°,AB=CD,
    在△EBA和△EDC中,
    ∵∠AEB=∠CED,∠BAE=∠DCE, AB=CD,
    ∴△EBA≌△EDC (AAS),
    ∴BE=DE,
    ∴△EBD为等腰三角形,
    ∴折叠后得到的图形是轴对称图形,
    故A、C、D正确,
    无法判断∠ABE和∠CBD是否相等,B选项错误;
    故选B.
    本题考查全等三角形的判定与性质以及等腰三角形的判定和性质,熟练掌握折叠的性质得出全等条件是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、±6
    【解析】
    先根据坐标轴上点的坐标特征得到直线与坐标轴的交点坐标,再根据三角形面积公式得 ,然后解关于a的绝对值方程即可.
    【详解】
    解:当y=0时,y=-3x+a=0,解得x= ,则直线与x轴的交点坐标为(,0);
    当x=0时,y=-3x+a=a,则直线与y轴的交点坐标为(0,a);
    所以,解得:a=±6. 故选答案为:±6.
    本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是( ,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.
    10、①, ②, ③.
    【解析】
    ①根据二次根式的性质化简即可解答
    ②根据立方根的性质计算即可解答
    ③根据积的乘方,同底数幂的除法,进行计算即可解答
    【详解】
    ①=
    ②=-3
    ③=4x =4x
    此题考查二次根式的性质,同底数幂的除法,解题关键在于掌握运算法则
    11、1 .
    【解析】
    分析:连接O1A,O1B,先证明△AO1C≌△BO1D,从而可得S四边形ACO1D=S△AO1B=S正方形ABEF=,然后可求阴影部分面积之和.
    详解:如图,连接O1A,O1B.
    ∵四边形ABEF是正方形,
    ∴O1A=O1B, ∠AO1B=90°.
    ∵∠AO1C+∠AO1D=90°, ∠BO1D+∠AO1D=90°,
    ∴∠AO1C=∠BO1D.
    在△AO1C和△BO1D中,
    ∵∠AO1C=∠BO1D,
    O1A=O1B,
    ∠O1AC=∠O1BD=45°,
    ∴△AO1C≌△BO1D,
    ∴S四边形ACO1D=S△AO1B=S正方形ABEF=,
    ∴阴影部分面积之和等于×4=1.
    故答案为:1.
    点睛:本题考查了正方形的性质,全等三角形的判定与性质,证明△AO1C≌△BO1D是解答本题的关键.
    12、﹣1
    【解析】
    分析:直接利用分式加减运算法则计算得出答案.
    详解:==.
    故答案为-1.
    点睛:此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.
    13、对角线互相垂直平分的四边形是菱形
    【解析】
    解:如图,连接DF、DE.
    根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.
    则四边形DECF恰为菱形.
    所以小明这样折叠的依据是: 对角线互相垂直平分的四边形是菱形.
    三、解答题(本大题共5个小题,共48分)
    14、(2)y=2x+2;(2)x<﹣2或0<x<2;(3)(0,﹣4),(0,4)或(2,4).
    【解析】
    (2)首先将A点坐标代入反比例函数,进而计算出k的值,再将B点代入反比例函数的关系式,求得参数m的值,再利用待定系数法求解一次函数的解析式.
    (2)根据题意要使>ax+b则必须反比例函数的图象在一次函数之上,观察图象即可得到x的取值范围.
    (3)首先写出A、C的坐标,再根据对角为OC、OA、AC进行分类讨论.
    【详解】
    解:(2)将A(2,4)代入y=,得:4=k,
    ∴反比例函数的关系式为y=;
    当y=﹣2时,﹣2=,解得:m=﹣2,
    ∴点B的坐标为(﹣2,﹣2).
    将A(2,4),B(﹣2,﹣2)代入y=ax+b,得: ,
    解得:,
    ∴一次函数的关系式为y=2x+2.
    (2)观察函数图象,可知:当x<﹣2或0<x<2时,反比例函数图象在一次函数图象上方,
    ∴使得>ax+b成立的自变量x的取值范围为x<﹣2或0<x<2.
    (3)∵点A的坐标为(2,4),
    ∴点C的坐标为(2,0).
    设点D的坐标为(c,d),分三种情况考虑,如图所示:
    ①当OC为对角线时, ,
    解得: ,
    ∴点D2的坐标为(0,﹣4);
    ②当OA为对角线时,
    解得:
    ∴点D2的坐标为(0,4);
    ③当AC为对角线时, ,
    解得: ,
    ∴点D3的坐标为(2,4).
    综上所述:以A,O,C,D四点为顶点的四边形为平行四边形时,点D的坐标为(0,﹣4),(0,4)或(2,4).
    本题主要考查反比例函数和一次函数的综合性问题,这类题目是考试的热点问题,综合性比较强,但是也很容易,应当熟练掌握.
    15、原不等式组的解集为2≤x<1,表示见解析.
    【解析】
    先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.
    【详解】
    解:解不等式1x+1>5(x﹣1),得:x<1,解不等式x﹣6≥,得:x≥2,在同一条数轴上表示不等式的解集为:
    所以原不等式组的解集为2≤x<1.
    本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    16、(1)见解析;(2)
    【解析】
    (1)连结 CE,CF,知道AE=AF,可得CE=CF,即可证明;(2)正方形ABCD的边长为2,若五边形BCDEF的面积为,则可算出△AEF的面积,从而求出CM
    【详解】
    (1)证明:连结 CE,CF
    ∵四边形 ABCD 是正方形
    ∴∠B=∠D=90°, BC=CD AB=AD
    又 AE=AF
    ∴BE=DF
    ∴△CBE≌△CDF(SAS)
    ∴CE=CF
    而M 是 EF 中点
    ∴CM⊥EF(等腰三角形三线合一)
    (2)连接AM,由(1)可知,AMC三点共线,
    正方形ABCD的边长为2,若五边形BCDEF的面积为,则△ AEF的面积为,
    则AC=,AE=AF=,
    ∴EF=,AM=,则CM=-=
    熟练掌握正方形内边角的转换计算和辅助线作法是解决本题的关键
    17、(1)1500;(2)详见解析;(3)108°;(5)1.
    【解析】
    (1)根据16-18岁的近视人数和所占总调查人数的百分率即可求出总调查人数;
    (2)计算出7-9岁的近视人数即可补全条形统计图;
    (3)求出10-12岁的近视人数占总调查人数的百分率,再乘360°即可;
    (4)求出7-12岁的近视学生人数占总调查人数的百分率,再乘该区总人数即可.
    【详解】
    解:(1)这次抽样调查中共调查了近视学生人数为:330÷22%=1500人
    故答案为:1500
    (2)7-9岁的近视人数为:人
    补全条形统计图如下:
    (3)10-12岁部分的圆心角的度数是
    故答案为:
    (4)10万人=100000人
    估计其中7-12岁的近视学生人数为人
    答:7-12岁的近视学生人数约1人.
    此题考查的是条形统计图和扇形统计图,掌握结合条形统计图和扇形统计图得出有用信息是解决此题的关键.
    18、 (1)证明见解析;(2)BP的值为.
    【解析】
    (1)利用平行四边形的性质和角平分线的定义可求,可证得结论CD=CF=DE;
    (2)过P作于PG⊥BC于G,在Rt△BPG中可求得PG和CG的长,则可求得BG的长,在Rt△BPG中,由勾股定理可求得BP的长.
    【详解】
    (1)证明:∵四边形ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠EDF=∠DFC,
    ∵DF平分∠ADC,
    ∴∠EDF=∠CDF,
    ∴∠DFC=∠CDF,
    ∴CD=CF,
    同理可得CD=DE,
    ∴CF=DE,且CF∥DE,
    ∴四边形CDEF为菱形;
    (2)解:如图,过P作PG⊥BC于G,
    ∵AB=2,BC=3,∠A=120°,且四边形CDEF为菱形,
    ∴CF=EF=CD=AB=2,∠ECF=∠BCD=∠A=60°,
    ∴△CEF为等边三角形,
    ∴CE=CF=2,
    ∴PC=CE=1,
    ∴CG=PC=,PG=PC=,
    ∴BG=BC﹣CG=3﹣=,
    在Rt△BPG中,由勾股定理可得BP==,
    即BP的值为.
    本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和菱形的性质是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,
    则AD=1,BF=BC+CF=BC+1,DF=AC,
    又∵AB+BC+AC=1,
    ∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
    考点:平移的性质.
    20、y=-x+1
    【解析】
    根据平面坐标系中函数图像的平移规律“左加右减,上加下减”可知,当平移1个单位时,平移后的函数解析式为y=-x+1.
    【详解】
    由题意得:y = -x的图像向上平移,得到y=-x+1,故本题答案是y=-x+1.
    本题主要考查图形的平移和一次函数的图像性质,学生掌握即可.
    21、-4或1
    【解析】
    分析:点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x-1|=5,从而解得x的值.
    解答:解:∵点M(1,3)与点N(x,3)之间的距离是5,
    ∴|x-1|=5,
    解得x=-4或1.
    故答案为-4或1.
    22、
    【解析】
    延长CH交FG的延长线于点N,由条件可以得出△CDH≌△NFH,就可以得出CH=NH,CD=NF,求出NG的长,根据勾股定理求出CN的长,从而可求出CH的长.
    【详解】
    解:延长CH交FG的延长线于点N,
    ∵FG∥CD,
    ∴∠CDH=∠NFH.
    ∵点为的中点,
    ∴DH=FH.
    在△CDH和△NFH中,
    ∵∠CDH=∠NFH,
    DH=FH,
    ∠CHD=∠NHF,
    ∴△CDH≌△NFH,
    ∴CH=NH,CD=NF=10,
    ∴NG=4,
    ∴CN=,
    ∴CH=2.
    故答案为:2.
    本题考查了矩形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,等腰直角三角形的性质的运用,特殊角的三角函数值的运用.解答时证明三角形全等是解答本题的关键.
    23、k>1
    【解析】
    ∵关于x的一元二次方程x1﹣1x+k﹣1=0没有实数根,
    ∴△<0,即(﹣1)1﹣4(k﹣1)<0,
    解得k>1,
    故答案为k>1.
    二、解答题(本大题共3个小题,共30分)
    24、(1)作图见解析 (2)作图见解析
    【解析】
    (1)连接AD、BC相交于点O,Rt△AOB即为所求;
    (2)连接AD交BE于F,连接CF,四边形BFCD即为所求.
    【详解】
    (1)连接AD、BC相交于点O,Rt△AOB即为所求;
    (2)连接AD交BE于F,连接CF,四边形BFCD即为所求.
    本题考查了尺规作图的问题,掌握直角三角形和菱形的性质是解题的关键.
    25、(1)10-2t;(2)t=2(3)t=或t=.
    【解析】
    (1)根据AP=AD-DP即可写出;
    (2)当四边形ABQP为平行四边形时,AP=BQ,即可列方程进行求解;
    (3)分两种情况讨论:①若PQ=BQ,在Rt△PQE中,由PQ2=PE2+EQ2,PQ=BQ,将各数据代入即可求解;②若PB=PQ,则BQ=2EQ,列方程即可求解.
    【详解】
    (1)∵动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,
    ∴AP=AD-DP=10-2t,
    故填:10-2t;
    (2)∵四边形ABQP为平行四边形时,∴AP=BQ,
    ∵BQ=BC-CQ=8-t,
    ∴10-2t=8-t,解得t=2,
    (3)如图,过点P作PE⊥BC于E,
    ①当∠BQP为顶角时,PQ=BQ,BQ=8-t,PE=CD=6,EQ=CE-CQ=2t-t=t,
    在Rt△PQM中,由PQ2=PE2+EQ2,又PQ=BQ,
    ∴(8-t)2=62+t2,
    解得t=
    ②当∠BPQ为顶角时,则BP=PQ
    由BQ=2EQ,即8-t=2t
    解得t=
    故 t=或t=时,符合题意.
    此题主要考查四边形的动点问题,解题的关键是熟知等腰三角形的性质及勾股定理列出方程进行求解.
    26、(1)∠BGD=120°;(2)见解析;(3)S四边形ABCD=26.
    【解析】
    (1)只要证明△DAE≌△BDF,推出∠ADE=∠DBF,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;
    (2)如图3中,延长GE到M,使得GM=GB,连接BD、CG.由△MBD≌△GBC,推出DM=GC,∠M=∠CGB=60°,由CH⊥BG,推出∠GCH=30°,推出CG=2GH,由CG=DM=DG+GM=DG+GB,即可证明2GH=DG+GB;
    (3)解直角三角形求出BC即可解决问题;
    【详解】
    (1)解:如图1﹣1中,
    ∵四边形ABCD是菱形,
    ∴AD=AB,
    ∵∠A=60°,
    ∴△ABD是等边三角形,
    ∴AB=DB,∠A=∠FDB=60°,
    在△DAE和△BDF中,

    ∴△DAE≌△BDF,
    ∴∠ADE=∠DBF,
    ∵∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,
    ∴∠BGD=180°﹣∠BGE=120°.
    (2)证明:如图1﹣2中,延长GE到M,使得GM=GB,连接CG.
    ∵∠MGB=60°,GM=GB,
    ∴△GMB是等边三角形,
    ∴∠MBG=∠DBC=60°,
    ∴∠MBD=∠GBC,
    在△MBD和△GBC中,

    ∴△MBD≌△GBC,
    ∴DM=GC,∠M=∠CGB=60°,
    ∵CH⊥BG,
    ∴∠GCH=30°,
    ∴CG=2GH,
    ∵CG=DM=DG+GM=DG+GB,
    ∴2GH=DG+GB.
    (3)如图1﹣2中,由(2)可知,在Rt△CGH中,CH=4,∠GCH=30°,
    ∴tan30°=,
    ∴GH=4,
    ∵BG=6,
    ∴BH=2,
    在Rt△BCH中,BC=,
    ∵△ABD,△BDC都是等边三角形,
    ∴S四边形ABCD=2•S△BCD=2××()2=26.
    本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    题号





    总分
    得分
    批阅人
    相关试卷

    2024-2025学年福建省厦门市六中学数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年福建省厦门市六中学数学九上开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省福州十中学数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年福建省福州十中学数学九上开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省福州市六校联考九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年福建省福州市六校联考九上数学开学学业水平测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map