终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年福建省永泰县数学九年级第一学期开学监测试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年福建省永泰县数学九年级第一学期开学监测试题【含答案】第1页
    2024-2025学年福建省永泰县数学九年级第一学期开学监测试题【含答案】第2页
    2024-2025学年福建省永泰县数学九年级第一学期开学监测试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年福建省永泰县数学九年级第一学期开学监测试题【含答案】

    展开

    这是一份2024-2025学年福建省永泰县数学九年级第一学期开学监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有( )
    A.B.C.D.
    2、(4分)2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:
    根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
    A.队员1B.队员2C.队员3D.队员4
    3、(4分)在□ABCD中,∠A:∠B=7:2,则∠C等于( )
    A.40°B.80°C.120°D.140°
    4、(4分)如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )
    A.30°B.15°C.18°D.20°
    5、(4分)下列式子运算正确的是( )
    A.B.
    C.D.
    6、(4分)如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )
    A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC
    7、(4分)已知一次函数y=kx+b的图象如图,则k、b的符号是( )
    A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
    8、(4分)下列图形既是轴对称图形,又是中心对称图形的是( )
    A.三角形B.圆C.角D.平行四边形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某县为了节约用水,自建了一座污水净化站,今年一月份净化污水3万吨,三月份增加到3.63万吨,则这两个月净化的污水量每月平均增长的百分率为______.
    10、(4分)分式的值为0,那么的值为_____.
    11、(4分)若有意义,则x的取值范围为___.
    12、(4分)反比例函数经过点,则________.
    13、(4分)若点在正比例函数的图象上,则__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)化简或求值:
    (1)化简:;
    (2)先化简,再求值:,其中.
    15、(8分)社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.
    (1)求通道的宽是多少米?
    (2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?
    16、(8分)积极推行节能减排,倡导绿色出行,“共享单车”、共享助力车”先后上市,为人们出行提供了方便.某人去距离家千米的单位上班,骑“共享助力车”可以比骑“共享单车”少用分钟,已知他骑“共享助力车”的速度是骑“共享单车”的倍,求他骑“共享助力车”上班需多少分钟?
    17、(10分)如图所示,在平行四边形中,于,于,若,,,求平行四边形的周长.
    18、(10分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级各有150人参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下:
    七年级 88 94 90 94 84 94 99 94 99 100
    八年级 84 93 88 94 93 98 93 98 97 99
    整理数据:按如下分段整理样本数据并补全表格:
    分析数据:补全下列表格中的统计量:
    得出结论:你认为抽取的学生哪个年级的成绩较为稳定?并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)使得分式值为零的x的值是_________;
    20、(4分)分解因式:2m2-8=_______________.
    21、(4分)如图所示,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF=____________.
    22、(4分)如图,∠AOP=∠BOP,PC∥OA,PD⊥OA,若∠AOB=45°,PC=6,则PD的长为_____.
    23、(4分)如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平行四边形中,对角线相交于点,于点.
    (1)用尺规作于点 (要求保留作图痕迹,不要求写作法与证明);
    (2)求证: .
    25、(10分)如图,在锐角中,点、分别在边、上,于点,于点,
    (1)求证:;
    (2)若,,求的值.
    26、(12分)我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题。

    (1)一共抽取了___个参赛学生的成绩;表中a=___;
    (2)补全频数分布直方图;
    (3)计算扇形统计图中“B”对应的圆心角度数;
    (4)某校共2000人,安全意识不强的学生(指成绩在70分以下)估计有多少人?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由等腰直角三角形的性质可得AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO,由“ASA”可证△ADO≌△CEO,△CDO≌△BEO,由全等三角形的性质可依次判断.
    【详解】
    ∵在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,
    ∴AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO
    ∵∠DOE=90°,
    ∴∠COD+∠COE=90°,且∠AOD+∠COD=90°
    ∴∠COE=∠AOD,且AO=CO,∠A=∠ACO=45°,
    ∴△ADO≌△CEO(ASA)
    ∴AD=CE,OD=OE,故④正确,
    同理可得:△CDO≌△BEO
    ∴CD=BE,
    ∴AC=AD+CD=AD+BE,故①正确,
    在Rt△CDE中,CD2+CE2=DE2,
    ∴AD2+BE2=DE2,故②正确,
    ∵△ADO≌△CEO,△CDO≌△BEO
    ∴S△ADO=S△CEO,S△CDO=S△BEO,
    ∴△ABC的面积等于四边形CDOE面积的2倍;故③正确,
    综上所述:正确的结论有①②③④,
    故选D.
    本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,熟练运用等腰直角三角形的性质是本题的关键.
    2、B
    【解析】
    据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【详解】
    因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.
    故选B.
    考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    3、A
    【解析】
    根据平行四边形的性质得到AD∥BC,AB∥CD,由平行线的性质得到∠A,再由平行线的性质得到∠C=40°.
    【详解】
    根据题意作图如下:
    因为BCD是平行四边形,所以AD∥BC,AB∥CD;因为AD∥BC,所以∠A是∠B的同
    的同旁内角,即∠A+∠B=180°;又因为∠A:∠B=7:2,所以可得∠A==140°;又因为AB∥CD,所以∠C是∠A的同旁内角,所以∠C=180°-140°=40°.故选择A.
    本题考查平行四边形的性质和平行线的性质,解题的关键是掌握平行四边形的性质和平行线的性质.
    4、C
    【解析】
    ∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
    【详解】
    ∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
    ∴∠1=108°-90°=18°.故选C
    本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.
    5、D
    【解析】
    利用二次根式的加减法对A、B进行判断;根据分母有理化对C进行判断;根据完全平方公式对D进行判断.
    【详解】
    解:A、原式=﹣,所以A选项错误;
    B、与不能合并,所以B选项错误;
    C、原式=,所以C选项错误;
    D、原式=9﹣6 +10=19﹣6 ,所以D选项正确.
    故选:D.
    题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    6、B
    【解析】
    A.菱形的对边平行且相等,所以AB∥DC,故本选项正确;
    B.菱形的对角线不一定相等;
    C.菱形的对角线互相垂直,所以AC⊥BD,故本选项正确;
    D.菱形的对角线互相平分,所以OA=OC,故本选项正确.故选B.
    7、D
    【解析】
    由图可知,一次函数y=kx+b的图象经过二、三、四象限,根据一次函数图象在坐标平面内的位置与k、b的关系作答.
    【详解】
    解:由一次函数y=kx+b的图象经过二、三、四象限,
    又有k<1时,直线必经过二、四象限,故知k<1,
    再由图象过三、四象限,即直线与y轴负半轴相交,所以b<1.
    故选:D.
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限;b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.
    8、B
    【解析】
    根据轴对称图形与中心对称图形的概念逐项判断可得答案.
    【详解】
    解:A、三角形不一定是轴对称图形,不是中心对称图形,故本选项错误;
    B、圆既是轴对称图形又是中心对称图形,故本选项正确;
    C、角是轴对称图形,不一定是中心对称图形,故本选项错误;
    D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;
    故选:B.
    此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、10%
    【解析】
    本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两个月净化的污水量平均每月增长的百分率为x,那么由题意可得出方程为3(1+x)2=3.63解方程即可求解.
    【详解】
    解:设这两个月净化的污水量平均每月增长的百分率为x,由题意得3(1+x)2=3.63
    解得x=0.1或-2.1(不合题意,舍去)
    所以这两个月净化的污水量平均每月增长的百分率为10%.
    本题主要考查了增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.
    10、-1
    【解析】
    根据分式值为0得出分子等于0求出x的值,再根据分母不等于0排除x=1,即可得出答案.
    【详解】
    ∵分式的值为0

    解得:x=1或x=-1
    又x-1≠0
    ∴x=-1
    故答案为-1.
    本题考查的是分式的值为0,属于基础题型,注意分式值为0则分子等于0,但分母不等于0.
    11、x≥﹣1.
    【解析】
    根据被开方数大于等于0,分母不等于0列式计算即可得解.
    【详解】
    由题意得,x+1≥0且x+2≠0,解得x≥﹣1.
    故答案为x≥﹣1.
    本题考查了二次根式有意义的条件和分式有意义的条件,一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    12、3
    【解析】
    把点代入即可求出k的值.
    【详解】
    解:因为反比例函数经过点,
    把代入,得.
    故答案为:3
    本题考查了反比例函数图象上点的坐标特征:反比例函数的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    13、
    【解析】
    将y=1代入正比例函数y=-2x求出m值,此题得解.
    【详解】
    将y=1代入正比例函数y=-2x中得:
    1=-2m
    解得:m=
    故答案是:.
    考查了一次函数图象上点的坐标特征,将y=1代入正比例函数y=-2x求出m值是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2),.
    【解析】
    (1)根据分式的减法和乘法可以化简题目中的式子;
    (2)根据分式的乘法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.
    【详解】
    解:(1)


    (2)
    当时,原式.
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    15、(1)6;(2)40或400
    【解析】
    (1)设通道的宽x米,由图中所示可得通道面积为2×28x+2(52-2x)x,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a元,则少租出个车位,根据月租金收入为14400元列方程求出a值即可.
    【详解】
    (1)设通道的宽x米,根据题意得:2×28x+2(52-2x)x+640=52×28,
    整理得:x2-40x+204=0,
    解得:x1=6,x2=34(不符合题意,舍去).
    答:通道的宽是6米.
    (2)设每个车位的月租金上涨a元,则少租出个车位,
    根据题意得:(200+a)(64-)=14400,
    整理得:a2-440a+16000=0,
    解得:a1=40,a2=400.
    答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.
    本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.
    16、20分钟
    【解析】
    他骑“共享助力车”上班需x分钟,根据骑“共享助力车”的速度是骑“共享单车”的倍列分式方程解得即可.
    【详解】
    设他骑“共享助力车”上班需x分钟,

    解得x=20,
    经检验,x=20是原分式方程的解,
    答:他骑“共享助力车”上班需20分钟.
    此题考查分式方程的实际应用,正确理解题意是解题的关键.
    17、20
    【解析】
    在直角三角形AFB中,知道∠A=60°,AF=3,可求出AB的长,同理在Rt△BEC中,可求出BC,因为平行四边形对边相等,即可求出周长.
    【详解】
    解:在中,,,,
    ,,
    同理在中,,
    在平行四边形中,
    ,,
    平行四边形的周长为
    本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质.
    18、1,1,93.5,1;八年级的成绩较为稳定.
    【解析】
    根据中位数,众数和方差的定义即可得到结论.
    【详解】
    整理数据:按如下分段整理样本数据并补全表格:
    分析数据:补全下列表格中的统计量:
    八年级的成绩较为稳定,理由:∵七年级的方差=24.2,八年级的方差=20.4,24.2>20.4,∴八年级的成绩较为稳定.
    故答案为:1,1,93.5,1.
    本题考查了中位数,众数,方差,熟练掌握中位线,众数和方差的定义是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.
    【详解】
    解:要使分式有意义则 ,即
    要使分式为零,则 ,即
    综上可得
    故答案为2
    本题主要考查分式的性质,关键在于分式的分母不能为0.
    20、2(m+2)(m-2)
    【解析】
    先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.
    【详解】
    2m2-8,
    =2(m2-4),
    =2(m+2)(m-2)
    本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.
    21、10
    【解析】
    先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF的值.
    【详解】
    设BD=x,则CD=20−x,
    ∵△ABC是等边三角形,
    ∴∠B=∠C=60∘.
    ∴BE=cs60∘⋅BD=,
    同理可得,CF=,
    ∴BE+CF=+=10.
    本题考查等边三角形的性质,解题的关键是掌握等边三角形的性质.
    22、3
    【解析】
    过P作PE⊥OB,根据角平分线的定义和平行线的性质易证得△PCE是等腰直角三角形,得出PE=3,根据角平分线的性质即可证得PD=PE=3.
    【详解】
    解:过P作PE⊥OB,
    ∵∠AOP=∠BOP,∠AOB=45°,
    ∴∠AOP=∠BOP=22.5°,
    ∵PC∥OA,
    ∴∠OPC=∠AOP=22.5°,
    ∴∠PCE=45°,
    ∴△PCE是等腰直角三角形,

    ∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,
    ∴PD=PE=.
    本题考查了角平分线的性质,平行线的性质,等腰直角三角形的判定和性质,求得∠PCE=45°是解题的关键.
    23、
    【解析】
    设BG=x,则BE=x,即BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.
    【详解】
    设BG=x,
    则BE=x,
    ∵BE=BC,
    ∴BC=x,
    则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.
    故答案为:.
    本题主要考查正方形的性质,图形相似的的性质.解此题的关键在于根据正方形的性质得到相关边长的比.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析.
    【解析】
    (1)以C为圆心,大于AE长为半径画弧,分别交BD于点M,N两点,再分别以M,N为圆心,以大于MN为半径画弧,交于点G,连接CG并延长,交BD于点F,即可得CF⊥BD于点F;
    (2)由AE⊥BD于点E,CF⊥BD于点F,可得∠AEO=∠CFO=90°,又由在平行四边形ABCD中,OA=OC,即可利用AAS,判定△AOE≌△COF,继而证得结论
    【详解】
    解:(1)如图,为所求;
    (2)∵四边形是平行四边形,

    ∵于点,于点,

    在和中,
    ∴≌()

    本题考查了平行四边形的性质,以及基本作图:过直线外一点做已知直线的垂线段,掌握平行四边形的性质以及三角形全等的判定和过直线外一点做已知直线的垂线段,是解题的关键.
    25、(1)详见解析;(2)
    【解析】
    (1) 根据相似三角形的判定定理即可求解;
    (2) 有(1)得,所以,由(1)可知,证得,即可求解.
    【详解】
    (1)证明:(1)∵,,
    ∴,∵,

    ∵,∴
    (2)由(1)可知:,

    由(1)可知:,
    ∵,


    本题主要考查相似三角形判定定理,熟悉掌握定理是关键.
    26、(1)40,6;(2)见解析;(3)72°;(4)300.
    【解析】
    (1)利用总人数与个体之间的关系解决问题即可.
    (2)根据频数分布表画出条形图即可解决问题.
    (3)利用圆心角=360°×百分比计算即可解决问题.
    (4)根据成绩在70分以下的百分比乘以总人数即可.
    【详解】
    (1)抽取的学生成绩有14÷35%=40(个),
    则a=40−(8+12+14)=6,
    故答案为:40,6;
    (2)直方图如图所示:
    (3)扇形统计图中“B”的圆心角=360°× =72°.
    (4) 成绩在70分以下: =300(人).
    此题考查频数分布直方图,扇形统计图,解题关键在于看懂图中数据.
    题号





    总分
    得分
    队员1
    队员2
    队员3
    队员4
    平均数(秒)
    51
    50
    51
    50
    方差(秒2)
    3.5
    3.5
    14.5
    15.5

    相关试卷

    2024-2025学年福建省寿宁县数学九年级第一学期开学质量检测模拟试题【含答案】:

    这是一份2024-2025学年福建省寿宁县数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省邵武市四中学片区数学九年级第一学期开学监测模拟试题【含答案】:

    这是一份2024-2025学年福建省邵武市四中学片区数学九年级第一学期开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省平潭县数学九年级第一学期开学统考试题【含答案】:

    这是一份2024-2025学年福建省平潭县数学九年级第一学期开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map