2024-2025学年甘肃省庆阳市九上数学开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题是真命题的是( )
A.对角线相等的四边形是平行四边形B.对角线互相平分且相等的四边形是平行四边形
C.对角线互相平分的四边形是平行四边形D.对角线互相垂直的四边形是平行四边形
2、(4分)下列式子中,a取任何实数都有意义的是( )
A.B.C.D.
3、(4分)点A(m﹣1,n+1)在平面直角坐标系中的位置如图所示,则坐标为(m+1,n﹣1)的点是( )
A.P点B.B点C.C点D.D点
4、(4分)已知一次函数,随着的增大而增大,则的取值范围是( )
A.B.C.D.
5、(4分)小明发现下列几组数据能作为三角形的边:①3,4,5; ②5,12,13;③12,15,20;④8,24,25;其中能作为直角三角形的三边长的有( )组
A.1B.2C.3D.4
6、(4分)已知一次函数与的图象如图,则下列结论:①;②;③关于的方程的解为;④当时,,其中正确的个数是
A.1B.2C.3D.4
7、(4分)将点A(-2,-3)向左平移3个单位,再向上平移2个单位得到点B,则B的坐标是( )
A.(1,-3)B.(-2,1)C.(-5,-1)D.(-5,-5)
8、(4分)因式分解的正确结果是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形中,,,在数轴上,若以点为圆心,对角线的长为半径作弧交数轴的正半轴于,则点的表示的数为_____.
10、(4分)使为整数的的值可以是________(只需填一个).
11、(4分)如图,在直角坐标系中,正方形A1B1C1O、 A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为 ,点An的坐标为 .
12、(4分)当时,__.
13、(4分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为16,∠C=60°,则四边形ABEF的面积是___.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.
(1)求证:DF是线段AB的垂直平分线;
(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.
15、(8分)计算:
(1)
(2),,求的值.
16、(8分)甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,根据图象提供的信息,解决下列问题:
(1)A,B两城相距多少千米?
(2)分别求甲、乙两车离开A城的距离y与x的关系式.
(3)求乙车出发后几小时追上甲车?
(4)求甲车出发几小时的时候,甲、乙两车相距50千米?
17、(10分)某草莓种植大户,今年从草莓上市到销售完需要20天,售价为11元/千克,成本y(元/千克)与第x天成一次函数关系,当x=10时,y=7,当x=11时,y=6.1.
(1)求成本y(元/千克)与第x天的函数关系式并写出自变量x的取值范围;
(2)求第几天每千克的利润w(元)最大?最大利润是多少?(利润=售价-成本)
18、(10分)化简或求值
(1)(1+)÷
(2)1﹣÷,其中a=﹣,b=1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线AB与反比例函数的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,则v的取值范围是__________.
20、(4分)已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.
21、(4分)如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,__.
22、(4分)若分式的值为零,则x的值为______.
23、(4分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:
由上表可知,甲、乙两组成绩更稳定的是________组.
二、解答题(本大题共3个小题,共30分)
24、(8分)在倡导“社会主义核心价值观”演讲比赛中,某校根据初赛成绩在七、八年级分别选出10名同学参加决赛,对这些同学的决赛成绩进行整理分析,绘制成如下团体成绩统计表和选手成绩折线统计图:
根据上述图表提供的信息,解答下列问题:
(1)请你把上面的表格填写完整;
(2)考虑平均数与方差,你认为哪个年级的团体成绩更好?
(3)假设在每个年级的决赛选手中分别选出2个参加决赛,你认为哪个年级的实力更强一些?请说明理由.
25、(10分)如图,在菱形ABCD中,∠BAD=120°,E为AB边上一点,过E作EG⊥BC于点G,交对角线BD于点F.
(1)如图(1),若∠ACE=15°,BC=6,求EF的长;
(2)如图(2),H为CE的中点,连接AF,FH,求证:AF=2FH.
26、(12分)如图,等边三角形ABC的边长是6,点D、F分别是BC、AC上的动点,且BD=CF,以AD为边作等边三角形ADE,连接BF、EF.
(1)求证:四边形BDEF是平行四边形;
(2)连接DF,当BD的长为何值时,△CDF为直角三角形?
(3)设BD=x,请用含x的式子表示等边三角形ADE的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据对角线互相平分的四边形是平行四边形;对角线互相平分且相等的四边形是矩形;对角线互相平分的四边形是平行四边形;对角线互相垂直平分的四边形是菱形,即可做出解答。
【详解】
解:A、对角线相等的四边形是平行四边形,说法错误,应是对角线互相平分的四边形是平行四边形;B、对角线互相平分且相等的四边形是平行四边形,说法错误,应是矩形;C、对角线互相平分的四边形是平行四边形,说法正确;D、对角线互相垂直平分的四边形不一定是平行四边形,错误;故选:C.
本题主要考查了平行四边形,以及特殊的平行四边形的判定,关键是熟练掌握各种四边形的判定方法.
2、A
【解析】
直接利用分式和二次根式有意义的条件分析得出答案.
【详解】
A、,无论a为何值,a2+1都大于零,故a取任何实数都有意义,符合题意;
B、,a2-1有可能小于零,故此选项不合题意;
C、,a-1有可能小于零,故此选项不合题意;
D、,当a=0时,分式无意义,故此选项错误;
故选A.
此题主要考查了分式和二次根式有意义的条件,正确把握定义是解题关键.
3、C
【解析】
由(m﹣1,n+1)移动到(m+1,n﹣1),横坐标向右移动(m+1)﹣(m﹣1)=2个单位,纵坐标向下移动(n+1)﹣(n﹣1)=2个单位,依此观察图形即可求解.
【详解】
(m+1)﹣(m﹣1)=2,
(n+1)﹣(n﹣1)=2,
则点A(m﹣1,n+1)到(m+1,n﹣1)横坐标向右移动2个单位,纵坐标向下移动2个单位.
故选:C.
此题考查了点的坐标,解题的关键是得到点的坐标移动的规律.
4、A
【解析】
根据自变量系数大于零列不等式求解即可.
【详解】
由题意得
a-2>0,
∴a>2.
故选A.
本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
5、B
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.
【详解】
①∵
∴此三角形是直角三角形,符合题意;
②∵
∴此三角形是直角三角形,符合题意;
③∵
∴此三角形不是直角三角形,不符合题意;
④∵
∴此三角形不是直角三角形,不符合题意;
故其中能作为直角三角形的三边长的有2组
故选:B
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
6、C
【解析】
根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x≥2时,一次函数y1=x+a在直线y2=kx+b的上方,则可对④进行判断.
【详解】
一次函数经过第一、二、四象限,
,,所以①正确;
直线的图象与轴交于负半轴,
,,所以②错误;
一次函数与的图象的交点的横坐标为2,
时,,所以③正确;
当时,,所以④正确.
故选.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程,一次函数的性质.
7、C
【解析】
由题中平移规律可知:点B的横坐标为-2-3=-5;纵坐标为-3+2=-1,可知点B的坐标是(-5,-1).
故选C.
8、C
【解析】
首先提取公因式a,再利用平方差公式进行二次分解即可.
【详解】
=a(a-1)=,
故选:C.
此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
首先根据勾股定理计算出的长,进而得到的长,再根据点表示,可得点表示的数.
【详解】
解:由勾股定理得:,
则,
点表示,
点表示,
故答案为:.
此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.
10、1.
【解析】
根据=1填上即可.
【详解】
使为整数的x的值可以是1,
故答案为1.
本题考查了实数,能理解算术平方根的意义是解此题的关键,此题答案比唯一,如还有5、﹣3、﹣10等.
11、A4(7,8);An(2n-1-1,2n-1).
【解析】
∵点B1的坐标为(1,1),点B2的坐标为(3,2)
∴由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),
∴直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.
∵A1的纵坐标是:1=20,A1的横坐标是:0=20-1;
A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;
A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,
A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).
∴An的纵坐标是:2n-1,横坐标是:2n-1-1,
即点An的坐标为(2n-1-1,2n-1).
故答案为(7,8);(2n-1-1,2n-1).
12、
【解析】
将x的值代入x2-2x+2028=(x-1)2+2027,根据二次根式的运算法则计算可得.
【详解】
解:当x=1-时,
x2-2x+2028=(x-1)2+2027
=(1--1)2+2027
=(-)2+2027,
=3+2027
=1,
故答案为:1.
本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和运算法则及完全平方公式.
13、8.
【解析】
由作法得AE平分∠BAD,AB=AF,所以∠1=∠2,再证明AF=BE,则可判断四边形AFEB为平行四边形,于是利用AB=AF可判断四边形ABEF是菱形;根据菱形的性质得AG=EG,BF⊥AE,求出BF和AG的长,即可得出结果.
【详解】
由作法得AE平分∠BAD,AB=AF,
则∠1=∠2,
∵四边形ABCD为平行四边形,
∴BE∥AF,∠BAF=∠C=60°,
∴∠2=∠BEA,
∴∠1=∠BEA=30°,
∴BA=BE,
∴AF=BE,
∴四边形AFEB为平行四边形,△ABF是等边三角形,
而AB=AF,
∴四边形ABEF是菱形;
∴BF⊥AE,AG=EG,
∵四边形ABEF的周长为16,
∴AF=BF=AB=4,
在Rt△ABG中,∠1=30°,
∴BG=AB=2,AG=BG=2,
∴AE=2AG=,
∴菱形ABEF的面积;
故答案为:
本题考查了基本作图、平行四边形的性质与判定、菱形的判定与性质、等边三角形的判定与性质;证明四边形ABEF是菱形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)∠EBC =21°,∠F=23°.
【解析】
试题分析:(1)、根据题意得出AE=BE,然后结合AD=BD得出答案;(2)、根据等腰三角形的性质得出∠ABC=∠ACB=67°,根据∠EBC=∠ABC﹣∠ABE和∠F=90°﹣∠ABC得出角度.
试题解析:(1)、证明:∵∠A=∠ABE, ∴EA=EB, ∵AD=DB,
∴DF是线段AB的垂直平分线;
(2)、解:∵∠A=46°, ∴∠ABE=∠A=46°, ∵AB=AC, ∴∠ABC=∠ACB=67°,
∴∠EBC=∠ABC﹣∠ABE=21°, ∠F=90°﹣∠ABC=23°.
15、 (1) ;(2).
【解析】
(1)运用二次根式运算法则,直接计算即可;
(2)首先转化代数式,然后代入即可得解.
【详解】
(1) 原式=
(2)
=
此题主要考查二次根式的运算,熟练运用,即可解题.
16、(1)300千米;(2)甲对应的函数解析式为:y=60x,乙对应的函数解析式为y=100x−100;(3)1.5 ;(4)小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米
【解析】
(1)根据函数图象可以解答本题;
(2)根据图象中的信息分别求出甲乙两车对应的函数解析式,
(3)根据(2)甲乙两车对应的函数解析式,然后令它们相等即可解答本题;
(4)根据(2)中的函数解析式,可知它们相遇前和相遇后两种情况相距50千米,从而可以解答本题.
【详解】
(1)由图可知,
A、B两城相距300千米;
(2)设甲对应的函数解析式为:y=kx,
300=5k
解得,k=60,
即甲对应的函数解析式为:y=60x,
设乙对应的函数解析式为y=mx+n,
,
解得,,
即乙对应的函数解析式为y=100x−100,
(3)解,解得
2.5−1=1.5,
即乙车出发后1.5小时追上甲车;
(4)由题意可得,
当乙出发前甲、乙两车相距50千米,则50=60x,得x=,
当乙出发后到乙到达终点的过程中,则60x−(100x−100)=±50,
解得,x=1.25或x=3.75,
当乙到达终点后甲、乙两车相距50千米,则300−50=60x,得x=,
即小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米.
本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、(1)y=-0.1x+8(0<x≤20且x为整数);
(2)第20天每千克的利润最大,最大利润是9元/千克.
【解析】
(1)根据题意和当x=10时,y=7,当x=11时,y=6.1,可以求得一次函数的解析式及自变量x的取值范围;
(2)根据题意,可以得到w与x的函数关系式,再根据一次函数的性质和(1)中x的取值范围即可解答本题.
【详解】
解:(1)设成本y(元/千克)与第x天的函数关系式是y=kx+b,
,得,
即成本y(元/千克)与第x天的函数关系式是y=-0.1x+8(0<x≤20且x为整数);
(2)w=11-(-0.1x+8)=0.1x+7,
∵0<x≤20且x为整数,
∴当x=20时,w取得最大值,此时w=0.1×20+7=9,
答:第20天每千克的利润w(元)最大,最大利润是9元/千克.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
18、(1)、;(2)、2.
【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果;原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,将a与b的值代入计算即可求出值.
【详解】
解:(1)原式==
(2)原式=1﹣•=1-=
当a=﹣,b=1时,原式=2.
考点:分式的化简求值;分式的混合运算
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2<v<1
【解析】
由∠ACO=45°可设直线AB的解析式为y=-x+b,由点A、B在反比例函数图象上可得出p=,q=,代入点A、B坐标中,再利用点A、B在直线AB上可得=﹣u+b①,=﹣v+b②,两式做差即可得出u关于v的关系式,结合u的取值范围即可得答案.
【详解】
∵∠ACO=45°,直线AB经过二、四象限,
∴设直线AB的解析式为y=﹣x+b.
∵点A(u,p)和点B(v,q)为反比例函数的图象上的点,
∴p=,q=,
∴点A(u,),点B(v,).
∵点A、B为直线AB上的点,
∴=﹣u+b①,=﹣v+b②,
①﹣②得:,
即.
∵<u<2,
∴2<v<1,
故答案为:2<v<1.
本题考查反比例函数与一次函数的综合,根据∠ACO=45°设出直线AB解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键.
20、5
【解析】
根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°;然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.
【详解】
∵四边形ABCD为正方形,
∴∠BAE=∠D=90°,AB=AD,
在△ABE和△DAF中,∵AB=AD,∠BAE=∠D,AE=DF,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∵∠ABE+∠BEA=90°,
∴∠DAF+∠BEA=90°,
∴∠AGE=∠BGF=90°,
∵点H为BF的中点,
∴GH=BF,
∵BC=8,CF=CD-DF=8-2=6,
∴BF==10,
∴GH=BF=5.
本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.
21、或1
【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示,
连结AC,
在Rt△ABC中,AB=1,BC=12,
∴AC==13,
∵将ΔABE沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即将ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,设:,则,,
,
由勾股定理得:,
解得:;
②当点B′落在AD边上时,如图2所示,
此时ABEB′为正方形,∴BE=AB=1,
综上所述,BE的长为或1,
故答案为:或1.
本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.
22、-1
【解析】
试题分析:因为当时分式的值为零,解得且,所以x=-1.
考点:分式的值为零的条件.
23、甲
【解析】
根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.
【详解】
=8,=8,
[(8-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2]=0.4,
[(9-8)2+(8-8)2+(7-8)2+(9-8)2+(7-8)2]=0.8
∵<
∴甲组成绩更稳定.
故答案为:甲.
考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.
二、解答题(本大题共3个小题,共30分)
24、(1)八年级成绩的平均数1.7,七年级成绩的众数为80,八年级成绩的众数为1;
(2)八年级团体成绩更好些;
(3)七年级实力更强些.
【解析】
(1)通过读图即可,即可得知众数,再根据图中数据即可列出求平均数的算式,列式计算即可.
(2)根据方差的意义分析即可.
(3)分别计算两个年级前两名的总分,得分较高的一个班级实力更强一些.
【详解】
解:(1)由折线统计图可知:
七年级10名选手的成绩分别为:80,87,89,80,88,99,80,77,91,86;
八年级10名选手的成绩分别为:1,97,1,87,1,88,77,87,78,88;
八年级平均成绩=(1+97+1+87+1+88+77+87+78+88)=1.7(分),
七年级成绩中80分出现的次数最多,所以七年级成绩的众数为80;
八年级成绩中1分出现的次数最多,所以八年级成绩的众数为1.
(2)由于七、八年级比赛成绩的平均数一样,而八年级的方差小于七年级的方差,方差越小,则其稳定性越强,所以应该是八年级团体成绩更好些;
(3)七年级前两名总分为:99+91=190(分),
八年级前两名总分为:97+88=11(分),
因为190分>11分,所以七年级实力更强些.
本题考查了折线统计图,此题要求同学们不但要看懂折线统计图,而且还要掌握方差、平均数、众数的运用.
25、(1)EF=6﹣;(2)见解析
【解析】
(1)首先证明EG=CG,设BG=x,则EG=CG=x,根据BC=6,构建方程求出x,证明EF=BF,求出BF即可解决问题.
(2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.利用全等三角形的性质证明△FAM是等边三角形即可解决问题.
【详解】
解:(1)如图1中,
∵四边形ABCD是菱形,
∵AB=BC=CD=AD=6,AD∥BC,
∴∠ABC=180°﹣∠BAD=60°,
∴△ABC是等边三角形,
∴∠ACB=60°,
∵∠ACE=15°,
∴∠ECG=∠ACB﹣∠ACE=45°,
∵EG⊥CG,
∴∠EGC=90°,
∴EG=CG,
设BG=x,则EG=CG=x,
∴x+x=6,
∴x=3﹣3,
∵四边形ABCD是菱形,
∴∠FBG=∠EBF=30°,
∵∠BEG=30°,
∴FB=FE,
∵BF===6﹣,
∴EF=6﹣.
(2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.
∵EG⊥BC,MC⊥BC,
∴EF∥CM,
∴∠FEH=∠HCM,
∵∠EHF=∠CHM,EH=CH,
∴△EFH≌△CMH(ASA),
∴EF=CM,FH=HM,
∵EF=BF,
∴BF=CM,
∵∠ABF=∠ACM=30°,BA=CA,
∴△BAF≌△CAM(SAS),
∴AF=AM,∠BAF=∠CAM,
∴∠FAM=∠BAC=60°,
∴△FAM是等边三角形,
∵FH=HM,
∴AH⊥FM,∠FAH=∠FAM=×60°=30°,
∴AF=2FH.
本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
26、(1)见解析;(2)BD=2或4;(3)S△ADE=(x﹣3)2+(0≤x≤6)
【解析】
(1):要证明四边形BDEF是平行四边形,一般采用对边平行且相等来证明,因为已经有了DB=CF,只要有△ABD全等△ACE,就能得到∠ACE=∠ABD=60°,CE=CF=EF=BD,再利用∠CFE=60°=∠ACB,就能平行,故第一问的证;
(2):反推法,当△CDF为直角三角形,又因为∠C=60°,当∠CDF=90°时,可以知道
2CD=CF,因为CF=BD,BD+CD=6,∴BD=4,当∠CFD=90°时,可以知道CD=2CF,因为CF=BD,BD+CD=6,∴BD=2,故当BD=2或4时,△CFD为直角三角形;
(3):求等边三角形ADE的面积,只要知道边长就可求出,但是AD是变化的,所以我们采用组合面积求解,利用四边形ADCE减去△CDE即可,又因为△ABD≌△ACE,所以四边形ADCE的面积等于△ABD的面积,所以只需要求出△ABC的面积与△CDE即可,从而即可求面积.
【详解】
解:(1)
∵△ABC是等边三角形,
∴AB=BC,∠BAC=∠ABD=∠BCF=60°,
∵BD=CF,
∴△ABD≌△BCF(SAS),
∴BD=CF,
如图1,连接CE,∵△ADE是等边三角形,
∴AD=AE,∠DAE=60°,
∴∠BAD=∠CAE,
∵AB=AC,
∴△ABD≌△ACE(SAS),
∴∠ACE=∠ABD=60°,BD=CE,
∴CF=CE,
∴△CEF是等边三角形,
∴EF=CF=BD,∠CFE=60°=∠ACB,
∴EF∥BC,
∵BD=EF,
∴四边形BDEF是平行四边形;
(2)∵△CDF为直角三角形,
∴∠CFD=90°或∠CDF=90°,
当∠CFD=90°时,∵∠ACB=60°,
∴∠CDF=30°,
∴CD=2CF,
由(1)知,CF=BD,
∴CD=2BD,
即:BC=3BD=6,
∴BD=2,
∴x=2,
当∠CDF=90°时,∵∠ACB=60°,
∴∠CFD=30°,
∴CF=2CD,
∵CF=BD,
∴BD=2CD,
∴BC=3CD=6,
∴CD=2,
∴x=BD=4,
即:BD=2或4时,△CDF为直角三角形;
(3)如图,
连接CE,由(1)△ABD≌△ACE,
∴S△ABD=S△ACE,BD=CE,
∵BD=CF,
∴△CEF是等边三角形,
∴EM=CE=x,
∴S△CDE=CD×EM=(6﹣x)×x=x(6﹣x)
∴BH=CH=BC=3,
∴AH=3,
∴S△ABC=BC•AH=9
∴S△ADE=S四边形ADCE﹣S△CDE
=S△ACD+S△ACE﹣S△CDE
=S△ACD+S△ABD﹣S△CDE
=S△ABC﹣S△CDE
=9﹣x(6﹣x)
=(x﹣3)2+(0≤x≤6)
第一问虽然求证平行四边形,实际考查三角形全等的基本功
第二问,主要考查推理能力,把△CFD为直角三角形当做条件,来求BD的长,但是需要注意的是,写过需要先给出BD的长,来证明△CFD为直角三角形,
第三问,考查面积,主要利用组合图形求面积
题号
一
二
三
四
五
总分
得分
批阅人
甲组成绩(环)
8
7
8
8
9
乙组成绩(环)
9
8
7
9
7
七年级
八年级
平均数
85.7
_______
众数
_______
_______
方差
37.4
27.8
2024-2025学年甘肃省庆阳市镇原县数学九上开学统考试题【含答案】: 这是一份2024-2025学年甘肃省庆阳市镇原县数学九上开学统考试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省庆阳市名校九年级数学第一学期开学教学质量检测试题【含答案】: 这是一份2024-2025学年甘肃省庆阳市名校九年级数学第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省兰州外国语学校九上数学开学学业质量监测试题【含答案】: 这是一份2024-2025学年甘肃省兰州外国语学校九上数学开学学业质量监测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。