2024-2025学年甘肃省张掖市甘州区数学九上开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若腰三角形的周长是,则能反映这个等腰三角形的腰长(单位:)与底边长(单位:)之间的函数关系式的图象是( )
A.B.
C.D.
2、(4分)下列平面图形中,是中心对称图形的是( )
A.B.C.D.
3、(4分)直线l1:y=ax+b与直线l2:y=mx+n在同一平面直角坐标系中的图象如图所示,则关于x的不等式ax+b<mx+n的解集为( )
A.x>﹣2B.x<1C.x>1D.x<﹣2
4、(4分)若代数式有意义,则实数x的取值范围是( )
A.x≠-3B.x>-3C.x≥-3D.任意实数
5、(4分)已知直线y=kx+b经过一、二、三象限,则直线y=bx-k-2的图象只能是( )
A.B.C.D.
6、(4分)关于一次函数,下列结论正确的是
A.图象经过B.图象经过第一、二、三象限
C.y随x的增大而增大D.图象与y轴交于点
7、(4分)一天李师傅骑车上班途中因车发生故除,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,下列说法中错误的是( )
A.李师傅上班处距他家200米
B.李师傅路上耗时20分钟
C.修车后李师傅骑车速度是修车前的2倍
D.李师傅修车用了5分钟
8、(4分)函数中,自变量x的取值范围是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,∠CAB=70º,在同一平面内,将△ABC绕点逆时针旋转50º到△的位置,则∠= _________度.
10、(4分)函数:中,自变量x的取值范围是_____.
11、(4分)某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是 _________________ 米.
12、(4分)如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则D到AB的距离为____cm.
13、(4分)设函数与的图象的交点坐标为,则的值为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形ABCD中,E,F为对角线BD上的两点,且∠DAE=∠BCF.
求证:(1)AE=CF;
(2)四边形AECF是平行四边形.
15、(8分)如图,已知中,,请用尺规作出AB边的高线请留作图痕迹,不写作法
16、(8分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.
(1)求每部型手机和型手机的销售利润;
(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.
①求关于的函数关系式;
②该手机店购进型、型手机各多少部,才能使销售总利润最大?
(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.
17、(10分)先化简,再求值:,其中x=,y=.
18、(10分)如图,在中,点在边上,点在边的延长线上,且,与交于点.
(1)求证:;
(2)若点是的中点,,求边的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)由作图可知直线与互相平行,则方程组的解的情况为______.
20、(4分)如图,菱形ABCD的对角线AC=3cm,BD=4cm,则菱形ABCD的面积是_____.
21、(4分)反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是_____(用“<“连接).
22、(4分)菱形中,,,以为边长作正方形,则点到的距离为_________.
23、(4分)若关于x的分式方程有增根,则k的值为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了满足市场需求,某厂家生产A、B两种款式的环保购物袋,每天共生产5000个,两种购物袋的成本和售价如下表:
设每天生产A种购物袋x个,每天共获利y元.
(1)求y与x的函数解析式;
(2)如果该厂每天最多投入成本12000元,那么每天最多获利多少元?
25、(10分)如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.
求证:(1)BC=AD;
(2)△OAB是等腰三角形.
26、(12分)如图,Rt△ABO的顶点A是双曲线y1=与直线y2=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.
(1)求这两个函数的解析式;
(2)求△AOC的面积.
(3)直接写出使y1>y2成立的x的取值范围
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据三角形的周长列式并整理得到y与x的函数关系式,再根据三角形的任意两边之和大于第三边,任意两边之和大于第三边列式求出x的取值范围,即可得解.
【详解】
解:根据题意,x+2y=10,
所以,,
根据三角形的三边关系,x>y-y=0,
x<y+y=2y,
所以,x+x<10,
解得x<5,
所以,y与x的函数关系式为(0<x<5),
纵观各选项,只有D选项符合.
故选D.
本题主要考查的是三角形的三边关系,等腰三角形的性质,求出y与x的函数关系式是解答本题的关键.
2、B
【解析】
根据中心对称图形的概念求解.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、是中心对称图形,故此选项正确;
C、不是中心对称图形,故此选项错误;
D、不是中心对称图形,故此选项错误.
故选B.
本题考查中心对称图形.
3、B
【解析】
由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式ax+b<mx+n解集.
【详解】
解:观察图象可知,当x<1时,ax+b<mx+n,
∴不等式ax+b<mx+n的解集是x<1
故选B.
本题考查了一次函数与一元一次不等式的关系,根据交点得到相应的解集是解决本题的关键.
4、C
【解析】
根据二次根式有意义的条件即可求出答案.
【详解】
∵代数式有意义
∴x+3≥0
∴x≥-3.
故选C.
本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件.
5、C
【解析】
由直线y=kx+b经过一、二、三象限可得出k>0,b>0,进而可得出−k−2<0,再利用一次函数图象与系数的关系可得出直线y=bx−k−2的图象经过第一、三、四象限.
【详解】
解:∵直线y=kx+b经过一、二、三象限,
∴k>0,b>0,
∴−k−2<0,
∴直线y=bx−k−2的图象经过第一、三、四象限.
故选:C.
本题考查了一次函数图象与系数的关系,牢记“k>0,b>0时,y=kx+b的图象在一、二、三象限;k>0,b<0时,y=kx+b的图象在一、三、四象限”是解题的关键.
6、D
【解析】
根据一次函数的性质,依次分析各个选项,选出正确的选项即可.
【详解】
A.把x=3代入y=﹣2x+3得:y=﹣6+3=﹣3,即A选项错误;
B.一次函数y=﹣2x+3的图象经过第一、二、四象限,即B选项错误;
C.一次函数y=﹣2x+3的图象上的点y随x的增大而减小,即C选项错误;
D.把x=0代入y=﹣2x+3得:y=3,图象与y轴交于点(0,3),即D选项正确.
故选D.
本题考查了一次函数图象上点的坐标特征和一次函数的性质,正确掌握一次函数的性质是解题的关键.
7、A
【解析】
观察图象,明确每一段小明行驶的路程,时间,作出判断.
【详解】
A.李师傅上班处距他家2000米,此选项错误;
B.李师傅路上耗时20分钟,此选项正确;
C.修车后李师傅骑车速度是=200米/分钟,修车前速度为=100米/分钟,∴修车后李师傅骑车速度是修车前的2倍,此选项正确;
D.李师傅修车用了5分钟,此选项正确.
故选A.
本题考查了学生从图象中读取信息的能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.
8、B
【解析】
根据被开方数大于等于0列式进行计算即可得解.
【详解】
根据题意得,x+3⩾0,
解得x⩾−3.
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、10
【解析】
根据旋转的性质找到对应点、对应角进行解答.
【详解】
∵△ABC绕点A逆时针旋转50°得到△AB′C′,
∴∠BAB′=50°,
又∵∠BAC=70°,
∴∠CAB′=∠BAC-∠BAB′=1°.
故答案是:1.
本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点--旋转中心;②旋转方向;③旋转角度.
10、
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须,即.
11、1.
【解析】
在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.
【详解】
解:设旗杆高度为x,则
,
解得x=1.
故答案为:1.
本题考查相似三角形的应用,熟知同一时刻物高与影长成正比是解题关键.
12、2.1
【解析】
试题分析:先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.
解:过点D作DE⊥AB于E,
∵AD平分∠BAC,DE⊥AB,DC⊥AC
∴CD=DE
又BD:DC=2:1,BC=7.8cm
∴DC=7.8÷(2+1)=7.8÷3=2.1cm.
∴DE=DC=2.1cm.
故填2.1.
点评:此题主要考查角平分线的性质;根据角平分线上的点到角的两边的距离相等进行解答,各角线段的比求出线段长是经常使用的方法,比较重要,要注意掌握.
13、−.
【解析】
把交点坐标代入2个函数后,得到2个方程,求得a,b的解,整理求得的值即可.
【详解】
∵函数与y=x−1的图象的交点坐标为(a,b),
∴b= ,b=a−1,
∴=a−1,
a−a−2=0,
(a−2)(a+1)=0,
解得a=2或a=−1,
∴b=1或b=−2,
∴的值为−.
故答案为:−.
此题考查反比例函数与一次函数的交点问题,解题关键在于把交点坐标代入2个函数后,得到2个方程
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)详见解析
【解析】
(1)根据平行四边形的性质可得AB=CD, AB∥CD,得证∠BAE=∠DCF,可以证明△ABE≌△DCF(ASA),从而得出AE=CF;
(2)根据全等三角形的性质可得∠AEB=∠CFD,根据等角的补角相等可得∠AEF=∠CFE,然后证明AE∥CF,从而可得四边形AECF是平行四边形.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB=CD,∠DAB=∠BCD,AB∥CD,
∠ABE=∠CDF.
∵∠DAE=∠BCF,
∴∠BAE=∠DCF.
在△ABE和△CDF中,
,
∴△ABE≌△DCF(ASA).
∴AE=CF.
(2)∵△ABE≌△DCF,
∴∠AEB=∠CFD,
∴∠AEF=∠CFE,
∴AE∥CF,
∵AE=CF,
∴四边形AECF是平行四边形.
本题考查了平行四边形和全等三角形的问题,掌握平行四边形的性质以及判定定理、全等三角形的性质以及判定定理、等角的补角相等是解题的关键.
15、作图见解析.
【解析】
延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB的延长线于点M和点N,再作线段MN的垂直平分线CD即可.
【详解】
如图,延长AB,
以点C为圆心,大于点C到直线AB的距离的长为半径画弧,
交AB的延长线于点M和点N,
分别以M、N为圆心,以大于MN一半长为半径画弧,两弧交于一点,过点C以及这点作直线,交MN于点D,
则线段CD即为所求作的.
本题考查作图-基本作图,掌握作垂直平分线的基本步骤为解题关键.
16、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.
【解析】
(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;
(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;
②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;
(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.
【详解】
解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.
根据题意,得,
解得
答:每部型手机的销售利润为元,每部型手机的销售利润为元.
(2)①根据题意,得,即.
②根据题意,得,解得.
,,
随的增大而减小.
为正整数,
当时,取最大值,.
即手机店购进部型手机和部型手机的销售利润最大.
(3)根据题意,得.
即,.
①当时,随的增大而减小,
当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;
②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;
③当时,,随的增大而增大,
当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.
本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.
17、x+y,.
【解析】
试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.
试题解析:原式= ==x+y,
当x=,y==2时,原式=﹣2+2=.
18、 (1)证明见解析;(2)AD=12.
【解析】
(1)根据平行四边的判定与性质,可得答案;
(2)根据AAS证明△AGF≌△BGE,再根据全等三角形的性质与平行四边形的性质即可求解.
【详解】
(1)证明:∵四边形是平行四边形,
∴,
∵,
∴四边形是平行四边形,
∴;
(2)解:∵,
∴,
∵点是的中点,
∴,
在与中,
,
∴,
∴,
∵,
∴,
∵四边形是平行四边形,
∴.
本题考查了平行四边形的判定与性质,全等三角形的判定与性质,关键是证明△AGF≌△BGE.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、无解
【解析】
二元一次方程组的解,就是两个函数图象的交点坐标,当两函数图象平行时,两个函数无交点,因此解析式所组成的方程组无解.
【详解】
∵直线y=-5x+2与y=-5x-3互相平行,
∴方程组无解,
故答案为:无解.
此题主要考查了一次函数与二元一次方程组的关系,关键是掌握二元一次方程组的解,就是两个函数图象的交点.
20、11cm1
【解析】
利用菱形的面积公式可求解.
【详解】
解:因为菱形的对角线互相垂直平分,
∵AC=cm,BD=cm,
则菱形ABCD的面积是cm1.
故答案为11cm1.
此题主要考查菱形的面积计算,关键是掌握菱形的面积计算方法.
21、.
【解析】
根据反比例函数的k确定图象在哪两个象限,再根据(x1,y1),(x2,y2),其中,确定这两个点均在第一象限,根据在第一象限内y随x的增大而减小的性质做出判断.
【详解】
解:反比例函数y=图象在一、三象限,
(x1,y1),(x2,y2)在反比例函数y=图象上,且,
因此(x1,y1),(x2,y2)在第一象限,
∵反比例函数y=在第一象限y随x的增大而减小,
∴,
故答案为:.
本题考查了反比例函数的增减性,熟悉反比例函数的图象与性质是解题的关键.
22、5+或5-.
【解析】
分两种情况讨论:①当正方形ACFE边EF在AC左侧时,②当正方形ACFE边EF在AC右侧时.
【详解】
解:∵四边形ABCD是菱形,∠B=60°,
∴△ACD是等边三角形,且DO⊥AC.
∵菱形的边长为5,
∴DO= =
分两种情况讨论:
①当正方形ACFE边EF在AC左侧时,
过D点作DH2⊥EF,DH2长度表示点D到EF的距离,
DH2=5+DO=5+;
②当正方形ACFE边EF在AC右侧时,
过D点作DH1⊥EF,DH1长度表示点D到EF的距离,
DH1=5-DO=5-.
故答案为:5+或5-.
本题考查菱形的性质、正方形的性质、等边三角形的判定和性质,同时考查了分类讨论思想.解决此类问题要借助画图分析求解.
23、或
【解析】
分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出的值,代入整式方程求出的值即可.
【详解】
解:
去分母得:,
整理得:
由分式方程有增根,得到,
解得:或,
把代入整式方程得:;
把代入整式方程得:,
则的值为或.
故答案为:或
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
二、解答题(本大题共3个小题,共30分)
24、(1) ;(2)2400元.
【解析】
(1)根据题意可得A种塑料袋每天获利(2.4-2)x,B种塑料袋每天获利(3.6-3)(5000-x),共获利y元,列出y与x的函数关系式:y=(2.4-2)x+(3.6-3)(5000-x).
(2)根据题意得2x+3(4500-x)≤10000,解出x的范围.得出y随x增大而减小.
【详解】
(1)由题意得:=
(2)由题意得:≤12000
解得:≥3000
在函数中,<0
∴随的增大而减小
∴当=3000时,每天可获利最多,最大利润=2400
∴该厂每天最多获利2400元.
此题主要考查了一次函数的应用以及不等式组解法,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.
25、证明:(1)见解析
(2)见解析
【解析】
(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再由AC=BD,AB=BA,根据HL得出△ABC≌△BAD,即可证出BC=AD.
(2)根据△ABC≌△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.
【详解】
证明:(1)∵AC⊥BC,BD⊥AD,∴△ABC与△BAD是直角三角形,
在△ABC和△BAD中,∵ AC="BD" ,AB=BA,∠ACB=∠BDA =90°,
∴△ABC≌△BAD(HL).∴BC=AD.
(2)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.
∴△OAB是等腰三角形.
26、(1)y=﹣,y=﹣x+2;(2)3;(1)-1<x<0或x>1
【解析】
【分析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为1且为负数,由此即可求出k;
(2)由函数的解析式组成方程组,解之求得A、C的坐标,然后根据S△AOC=S△ODA+S△ODC即可求出;
(1)根据图象即可求得.
【详解】解:(1)设A点坐标为(x,y),且x<0,y>0,
则S△ABO=•|BO|•|BA|=•(﹣x)•y=,
∴xy=﹣1,
又∵y=,
即xy=k,
∴k=﹣1.
∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;
(2)由y=﹣x+2,
令x=0,得y=2.
∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),
∵A、C在反比例函数的图象上,
∴,
解得 ,,
∴交点A(﹣1,1),C为(1,﹣1),
∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(1+1)=3.
(1)-1<x<0或x>1 .
【点睛】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.也考查了函数和不等式的关系.
题号
一
二
三
四
五
总分
得分
成本(元/个)
售价 (元/个)
2
2.4
3
3.6
2024-2025学年甘肃省张掖市名校数学九年级第一学期开学调研试题【含答案】: 这是一份2024-2025学年甘肃省张掖市名校数学九年级第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省平凉市泾川县数学九上开学预测试题【含答案】: 这是一份2024-2025学年甘肃省平凉市泾川县数学九上开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年甘肃省张掖市甘州区育才中学九年级(上)期中数学试卷(含解析): 这是一份2023-2024学年甘肃省张掖市甘州区育才中学九年级(上)期中数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。