终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    高考数学第一轮复习(新教材新高考)第03讲导数与函数的极值、最值(核心考点精讲精练)(学生版+解析)

    立即下载
    加入资料篮
    高考数学第一轮复习(新教材新高考)第03讲导数与函数的极值、最值(核心考点精讲精练)(学生版+解析)第1页
    高考数学第一轮复习(新教材新高考)第03讲导数与函数的极值、最值(核心考点精讲精练)(学生版+解析)第2页
    高考数学第一轮复习(新教材新高考)第03讲导数与函数的极值、最值(核心考点精讲精练)(学生版+解析)第3页
    还剩78页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学第一轮复习(新教材新高考)第03讲导数与函数的极值、最值(核心考点精讲精练)(学生版+解析)

    展开

    这是一份高考数学第一轮复习(新教材新高考)第03讲导数与函数的极值、最值(核心考点精讲精练)(学生版+解析),共81页。试卷主要包含了 4年真题考点分布, 命题规律及备考策略等内容,欢迎下载使用。

    1. 4年真题考点分布
    2. 命题规律及备考策略
    【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较大,分值为12分
    【备考策略】1.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件
    2能够利用导数求函数的极大值、极小值以及在给定闭区间上的最大值、最小值
    3体会导数与极大(小)值、最大(小)值的关系
    【命题预测】本节内容是新高考卷的必考内容,会结合导数来判断或证明函数的单调性,从而求得函数的极值或给定区间上的最值,热点内容,需综合复习
    知识讲解
    函数的极值与导数
    (1)函数的极小值与极小值点
    若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,,而且在点x=a附近的左侧,右侧,则点a叫做函数的极小值点,f(a)叫做函数的极小值.
    (2)函数的极大值与极大值点
    若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,,而且在点x=b 附近的左侧,右侧,则点b叫做函数的极大值点,f(b)叫做函数的极大值.
    (3)极值与导数的关系
    是极值点
    是极值点,即:是为极值点的必要非充分条件
    函数的最值与导数
    (1)函数f(x)在[a,b]上有最值的条件
    如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
    (2)求y=f(x)在[a,b]上的最大(小)值的步骤
    ①求函数y=f(x)在(a,b)内的极值;
    ②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
    考点一、求函数的极值或极值点
    1.(天津·高考真题)已知函数在上满足,当时取得极值.
    (1)求的单调区间和极大值;
    (2)证明:对任意、,不等式恒成立.
    2.(全国·高考真题)已知函数(为自然对数的底数)
    (1)若曲线在点处的切线平行于轴,求的值;
    (2)求函数的极值;
    (3)当时,若直线与曲线没有公共点,求的最大值.
    3.(天津·高考真题)已知函数
    (Ⅰ)求函数的单调区间和极值;
    (Ⅱ)已知函数的图象与函数的图象关于直线对称,证明当时,
    (Ⅲ)如果,且,证明
    4.(山东·高考真题)设函数,其中.
    (Ⅰ)讨论函数极值点的个数,并说明理由;
    (Ⅱ)若成立,求的取值范围.
    1.(2023·湖北黄石·统考模拟预测)已知,函数,.
    (1)求函数的单调区间和极值;
    (2)设较小的零点为,证明:.
    2.(2023·河北沧州·校考模拟预测)已知函数.
    (1)求函数的极值点个数;
    (2)若不等式在上恒成立,求可取的最大整数值.
    3.(2023·江苏无锡·辅仁高中校考模拟预测)已知函数,.
    (1)求函数的极值点;
    (2)若恒成立,求实数的取值范围.
    4.(2023·福建龙岩·统考模拟预测)设函数.
    (1)求的极值;
    (2)已知,有最小值,求的取值范围.
    5.(2023·山东青岛·统考二模)已知函数,.
    (1)讨论极值点的个数;
    (2)若恰有三个零点和两个极值点.
    (ⅰ)证明:;
    (ⅱ)若,且,证明:.
    6.(2023·浙江·校联考模拟预测)己知函数有三个极值点,其中.
    (1)求的取值范围;
    (2)求证:;
    (3)求证:.
    考点二、根据函数极值或极值点求参数值或范围
    1.(2023·全国·统考高考真题)(多选)若函数既有极大值也有极小值,则( ).
    A.B.C.D.
    1.(2023·广东·校联考模拟预测)已知函数,若函数在处取得极小值,则的取值范围为 .
    2.(2023·辽宁鞍山·统考模拟预测)已知函数有两个极值点,,且,则实数m的取值范围是 .
    3.(2023·安徽阜阳·安徽省临泉第一中学校考三模)已知函数有两个极值点,则实数a的取值范围是 .
    4.(2023·山东·沂水县第一中学校联考模拟预测)已知函数存在两个极值点,,则以下结论正确的为( )
    A.B.
    C.若,则D.
    考点三、利用导数求函数最值
    1.(2022·全国·统考高考真题)函数在区间的最小值、最大值分别为( )
    A.B.C.D.
    2.(2022·全国·统考高考真题)已知函数.
    (1)当时,求的最大值;
    (2)若恰有一个零点,求a的取值范围.
    1.(2023·广东佛山·校考模拟预测)已知函数.
    (1)求函数在区间上的最小值;
    (2)判断函数的零点个数,并证明.
    2.(2023·江苏南通·统考模拟预测)已知函数,其中a为实数.
    (1)若,求函数在区间上的最小值;
    (2)若函数在上存在两个极值点,,且.求证:.
    3.(2023·浙江·校联考二模)设,已知函数有个不同零点.
    (1)当时,求函数的最小值:
    (2)求实数的取值范围;
    (3)设函数的三个零点分别为、、,且,证明:存在唯一的实数,使得、、成等差数列.
    4.(2023·福建福州·福州三中校考模拟预测)已知函数.
    (1)求函数在上的最小值;
    (2)证明:当时,.
    5.(2023·湖南岳阳·统考一模)已知函数,,.
    (1)讨论函数在区间上的最大值;
    (2)确定k的所有可能取值,使得存在,对任意的,恒有.
    6.(2023·江苏·二模)已知函数 .
    (1)当时,求函数的单调递增区间
    (2)若函数在的最小值为,求的最大值.
    考点四、由函数最值求参数值或范围
    1.(2022·全国·统考高考真题)当时,函数取得最大值,则( )
    A.B.C.D.1
    1.(2023·山东·山东省实验中学校考一模)若函数在区间上存在最小值,则整数的取值可以是 .
    2.(2023·广东广州·广州六中校考三模)已知与有相同的最小值.
    (1)求实数的值;
    (2)已知,函数有两个零点,求证:.
    【基础过关】
    一、多选题
    1.(2023·河北石家庄·统考三模)设函数的定义域为是的极大值点,以下结论一定正确的是( )
    A.B.是的极大值点
    C.是的极小值点D.是的极大值点
    2.(2023·吉林通化·梅河口市第五中学校考模拟预测)设函数,则( )
    A.是奇函数
    B.当时,有最小值2
    C.在区间上单调递减
    D.有两个极值点
    二、填空题
    3.(2023·安徽六安·安徽省舒城中学校考模拟预测)已知实数成等比数列,且函数,当时取到极大值,则等于 .
    三、解答题
    4.(2023·福建福州·福建省福州第一中学校考模拟预测)已知函数在处取得极值-14.
    (1)求a,b的值;
    (2)求曲线在点处的切线方程;
    (3)求函数在上的最值.
    5.(2023·浙江温州·统考二模)已知函数,.
    (1)若在处的切线与也相切,求的值;
    (2)若,求函数的最大值.
    6.(2023·江苏常州·常州市第三中学校考模拟预测)设函数.
    (1)当时,求函数的最大值;
    (2)当,,方程有唯一实数解,求正数的值.
    7.(2023·安徽马鞍山·统考三模)已知函数
    (1)当时,求函数的极值;
    (2)当时,恒成立,求实数的取值范围.
    8.(2023·辽宁丹东·统考二模)已知为函数的极值点.
    (1)求;
    (2)证明:当时,.
    9.(2023·福建·统考模拟预测)已知函数.
    (1)求的单调区间和极值;
    (2)若有零点,求的最小值.
    10.(2023·山东淄博·山东省淄博实验中学校考三模)已知函数.
    (1)求曲线在点处的切线方程;
    (2)求在区间上的最大值;
    (3)设实数使得对恒成立,写出的最大整数值,并说明理由.
    【能力提升】
    1.(2023·重庆万州·统考模拟预测)已知函数.
    (1)讨论的极值;
    (2)当时,关于x的不等式在上恒成立,求实数的取值范围.
    2.(2023·重庆万州·重庆市万州第三中学校考模拟预测)已知函数.
    (1)若在区间上有极小值,求实数的取值范围;
    (2)求证:.
    3.(2023·全国·模拟预测)已知函数,.
    (1)讨论函数的最值;
    (2)若函数有两个极值点,求实数a的取值范围.
    4.(2023·安徽合肥·合肥一六八中学校考模拟预测)已知函数,其中.
    (1)若时,有极值,求的值;
    (2)设,讨论的零点个数.
    5.(2023·湖北武汉·武汉二中校联考模拟预测)已知函数.
    (1)若的极大值为3,求实数的值;
    (2)若,求实数的取值范围.
    6.(2023·广东佛山·统考模拟预测)已知函数,其中.
    (1)讨论函数极值点的个数;
    (2)对任意的,都有,求实数的取值范围.
    7.(2023·湖南长沙·长郡中学校考二模)已知函数,.
    (1)当时,求函数的最小值;
    (2)当时,不等式恒成立,求实数a的取值范围.
    8.(2023·江苏淮安·江苏省郑梁梅高级中学校考模拟预测)已知函数,.
    (1)若,证明:;
    (2)若函数最大值为,求实数a的值.
    9.(2023·湖北黄冈·黄冈中学校考三模)已知函数.
    (1)当时,求函数在上的极值;
    (2)用表示中的最大值,记函数,讨论函数在上的零点个数.
    10.(2023·重庆·统考模拟预测)已知函数和在同一处取得相同的最大值.
    (1)求实数a;
    (2)设直线与两条曲线和共有四个不同的交点,其横坐标分别为(),证明:.
    【真题感知】
    一、单选题
    1.(2021·全国·统考高考真题)设,若为函数的极大值点,则( )
    A.B.C.D.
    二、多选题
    2.(2022·全国·统考高考真题)已知函数,则( )
    A.有两个极值点B.有三个零点
    C.点是曲线的对称中心D.直线是曲线的切线
    三、填空题
    3.(2021·全国·统考高考真题)函数的最小值为 .
    四、解答题
    4.(2023·全国·统考高考真题)(1)证明:当时,;
    (2)已知函数,若是的极大值点,求a的取值范围.
    5.(2021·北京·统考高考真题)已知函数.
    (1)若,求曲线在点处的切线方程;
    (2)若在处取得极值,求的单调区间,以及其最大值与最小值.
    6.(2021·天津·统考高考真题)已知,函数.
    (I)求曲线在点处的切线方程:
    (II)证明存在唯一的极值点
    (III)若存在a,使得对任意成立,求实数b的取值范围.
    第03讲 导数与函数的极值、最值
    (核心考点精讲精练)
    1. 4年真题考点分布
    2. 命题规律及备考策略
    【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较大,分值为12分
    【备考策略】1.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件
    2能够利用导数求函数的极大值、极小值以及在给定闭区间上的最大值、最小值
    3体会导数与极大(小)值、最大(小)值的关系
    【命题预测】本节内容是新高考卷的必考内容,会结合导数来判断或证明函数的单调性,从而求得函数的极值或给定区间上的最值,热点内容,需综合复习
    知识讲解
    函数的极值与导数
    (1)函数的极小值与极小值点
    若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,,而且在点x=a附近的左侧,右侧,则点a叫做函数的极小值点,f(a)叫做函数的极小值.
    (2)函数的极大值与极大值点
    若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,,而且在点x=b 附近的左侧,右侧,则点b叫做函数的极大值点,f(b)叫做函数的极大值.
    (3)极值与导数的关系
    是极值点
    是极值点,即:是为极值点的必要非充分条件
    函数的最值与导数
    (1)函数f(x)在[a,b]上有最值的条件
    如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
    (2)求y=f(x)在[a,b]上的最大(小)值的步骤
    ①求函数y=f(x)在(a,b)内的极值;
    ②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
    考点一、求函数的极值或极值点
    1.(天津·高考真题)已知函数在上满足,当时取得极值.
    (1)求的单调区间和极大值;
    (2)证明:对任意、,不等式恒成立.
    【答案】(1)单调递增区间为、,单调递减区间为,极大值为;(2)证明见解析.
    【分析】(1)由可求得,由题意得出可解出、的值,可得出函数的解析式,然后利用导数可求得函数的单调区间和极大值;
    (2)求得函数在区间上的最大值,最小值,由此可得出,进而可证得结论.
    【详解】(1),由,得,可得.
    ,,
    由于函数在处取得极值,则,解得,

    ,从而.
    当时,,则函数在上是增函数;
    在时,,则函数在上是减函数;
    当时,,则函数在上是增函数.
    所以,函数在处取得极大值,即;
    (2)由(1)知,函数在上是减函数,
    当时,,.
    所以,对任意、,不等式.
    【点睛】本题考查利用导数求解函数的单调区间和极值,同时也考查了利用导数证明函数不等式,考查计算能力与推理能力,属于中等题.
    2.(全国·高考真题)已知函数(为自然对数的底数)
    (1)若曲线在点处的切线平行于轴,求的值;
    (2)求函数的极值;
    (3)当时,若直线与曲线没有公共点,求的最大值.
    【答案】(1)(2)当时,函数无极小值;当,在处取得极小值,无极大值(3)的最大值为
    【分析】(1)求出,由导数的几何意义,解方程即可;(2)解方程,注意分类讨论,以确定的符号,从而确定的单调性,得极大值或极小值(极值点多时,最好列表表示);(3)题意就是方程无实数解,即关于的方程在上没有实数解.一般是分类讨论,时,无实数解,时,方程变为,因此可通过求函数的值域来求得的范围.
    【详解】(1)由,得.
    又曲线在点处的切线平行于轴,
    得,即,解得.
    (2),
    ①当时,,为上的增函数,
    所以函数无极值.
    ②当时,令,得,.
    ,;,.
    所以在上单调递减,在上单调递增,
    故在处取得极小值,且极小值为,无极大值.
    综上,当时,函数无极小值
    当,在处取得极小值,无极大值.
    (3)当时,
    令,
    则直线:与曲线没有公共点,
    等价于方程在上没有实数解.
    假设,此时,,
    又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.
    又时,,知方程在上没有实数解.
    所以的最大值为.
    解法二:
    (1)(2)同解法一.
    (3)当时,.
    直线:与曲线没有公共点,
    等价于关于的方程在上没有实数解,即关于的方程:
    (*)
    在上没有实数解.
    ①当时,方程(*)可化为,在上没有实数解.
    ②当时,方程(*)化为.
    令,则有.
    令,得,
    当变化时,的变化情况如下表:
    当时,,同时当趋于时,趋于,
    从而的取值范围为.
    所以当时,方程(*)无实数解, 解得的取值范围是.
    综上,得的最大值为.
    考点:导数的几何意义,极值,导数与单调性、值域,方程根的分布.
    3.(天津·高考真题)已知函数
    (Ⅰ)求函数的单调区间和极值;
    (Ⅱ)已知函数的图象与函数的图象关于直线对称,证明当时,
    (Ⅲ)如果,且,证明
    【答案】(Ⅰ)f(x)在()内是增函数,在()内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)= (Ⅱ)见解析(Ⅲ)见解析
    【详解】(Ⅰ)解:f’
    令f’(x)=0,解得x=1
    当x变化时,f’(x),f(x)的变化情况如下表
    所以f(x)在()内是增函数,在()内是减函数.
    函数f(x)在x=1处取得极大值f(1)且f(1)=
    (Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)
    令F(x)=f(x)-g(x),即
    于是
    当x>1时,2x-2>0,从而’(x)>0,从而函数F(x)在[1,+∞)是增函数.
    又F(1)=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).
    (Ⅲ)证明:(1)

    (2)若
    根据(1)(2)得
    由(Ⅱ)可知,>,则=,所以>,从而>.因为,所以,又由(Ⅰ)可知函数f(x)在区间(-∞,1)内事增函数,所以>,即>2.
    4.(山东·高考真题)设函数,其中.
    (Ⅰ)讨论函数极值点的个数,并说明理由;
    (Ⅱ)若成立,求的取值范围.
    【答案】(Ⅰ)见解析(Ⅱ)的取值范围是.
    【详解】试题分析:(Ⅰ)先求,令
    通过对 的取值的讨论,结合二次函数的知识,由导数的符号得到函数 的单调区间;(Ⅱ)根据(1)的结果这一特殊性,通过对参数的讨论确定的取值范围.
    试题解析:函数的定义域为
    令,
    (1)当 时, , 在上恒成立
    所以,函数在上单调递增无极值;
    (2)当 时,
    ①当时, ,
    所以,,函数在上单调递增无极值;
    ②当 时,
    设方程的两根为
    因为
    所以,
    由可得:
    所以,当时, ,函数单调递增;
    当时, ,函数单调递减;
    当时, ,函数单调递增;
    因此函数有两个极值点.
    (3)当 时,
    由可得:
    当时, ,函数单调递增;
    当时, ,函数单调递减;
    因此函数有一个极值点.
    综上:
    当 时,函数在上有唯一极值点;
    当时,函数在上无极值点;
    当时,函数在上有两个极值点;
    (Ⅱ)由(Ⅰ)知,
    (1)当时,函数在上单调递增,
    因为
    所以,时, ,符合题意;
    (2)当 时,由 ,得
    所以,函数在上单调递增,
    又,所以,时, ,符合题意;
    (3)当 时,由 ,可得
    所以 时,函数 单调递减;

    所以,当时, 不符合题意;
    (4)当时,设
    因为时,
    所以 在 上单调递增,
    因此当时,
    即:
    可得:
    当 时,
    此时, 不合题意.
    综上所述,的取值范围是
    考点:1、导数在研究函数性质中的应用;2、分类讨论的思想.
    1.(2023·湖北黄石·统考模拟预测)已知,函数,.
    (1)求函数的单调区间和极值;
    (2)设较小的零点为,证明:.
    【答案】(1)单调递减区间为,单调递增区间为;极小值,无极大值
    (2)证明见解析
    【分析】(1)由导数法求极值及单调区间即可;
    (2)先由零点存在定理说明存在两个零点,
    法一:由导数法证,,结合函数单调性即可证明;
    法二:由导数法证明证明当时,,再令代入不等式化简得证.
    【详解】(1)因为,,所以,
    当时,;当时,,所以函数的单调递减区间为,单调递增区间为,
    故有极小值,无极大值;
    (2)因为当时,,所以,
    所以,
    又时,;时,,
    所以有两个零点 ;
    法1:下面证明,,
    设,
    则,所以在上递增,
    又时,,所以对成立,
    所以得证 ,

    令,则,,,∴.
    设,,
    则,所以在上递减,
    所以,所以,
    所以得证 ,
    因为函数区间单调递减,
    又,,,、、,
    所以 ;
    法2:下面证明当时,,
    设,,

    所以在上递增,
    所以,所以,
    再设,,

    所以在上递增,
    所以,所以,
    综上,当时, ,
    现有,所以,
    故得,
    故得,
    所以 .
    【点睛】证明零点所在区间问题:
    (1)可结合零点存在定理说明在区间端点处异号及函数单调性证明;
    (2)通过将结论不等式变形,构造成题设函数的形式,从而将问题转化为证明不等式成立. 如本题变形成,变形成,则可转化为证;
    (3)证明不等关系可通过构造函数,结合导数法证明.
    2.(2023·河北沧州·校考模拟预测)已知函数.
    (1)求函数的极值点个数;
    (2)若不等式在上恒成立,求可取的最大整数值.
    【答案】(1)极值点个数为1
    (2)4
    【分析】(1)求出,然后证明只有一个变号零点即可;
    (2)条件不等式可转化为,然后求出,分、两种情况得到的单调性,然后可得到成立,然后利用导数可分析出答案.
    【详解】(1)已知,
    可得
    令,则,
    函数单调递减,且当时,,故函数先增后减,
    当时,,
    其中,∴,∴
    当时,,
    ∴函数只有一个零点,∴函数的极值点个数为1.
    (2)变形,得,
    整理得,
    令,则,∵,∴,
    若,则恒成立,即在区间上单调递增,
    由,∴,∴,∴,此时可取的最大整数为2,
    若,令,则,令,则,
    所以在区间上单调递减,在区间上单调递增,
    所以在区间上有最小值,,
    于是问题转化为成立,求的最大值,
    令,则,∵当时,,单调递减,
    当时,单调递增,∴在处取得最大值,
    ∵,∴,∵,,
    ,此时可取的最大整数为4.
    综上,可取的最大整数为4.
    3.(2023·江苏无锡·辅仁高中校考模拟预测)已知函数,.
    (1)求函数的极值点;
    (2)若恒成立,求实数的取值范围.
    【答案】(1)是的极大值点,无极小值点
    (2)
    【分析】(1)首先利用导数判断函数的单调区间,再确定函数的极值点;
    (2)解法一,首先构造函数,,再根据函数的导数,判断函数的最大值,即可求解;解法二,首先证明,即可得,即,不等式恒成立,转化为,即可求解.
    【详解】(1)由已知可得,函数的定义域为,且,
    当时,;当时,,
    所以的单调递增区间为,单调递减区间为,
    所以是的极大值点,无极小值点.
    (2)解法一:设,,
    则,
    令,,则对任意恒成立,
    所以在上单调递减.
    又,,
    所以,使得,即,则,即.
    因此,当时,,即,则单调递增;
    当时,,即,则单调递减,
    故,解得,
    所以当时,恒成立.
    解法二:令,,当时,;当时,,
    所以在上单调递减,在上单调递增,
    所以,即.
    因为,所以,当时等号成立,
    即,当时等号成立,
    所以的最小值为1.
    若恒成立,则,
    所以当时,恒成立.
    4.(2023·福建龙岩·统考模拟预测)设函数.
    (1)求的极值;
    (2)已知,有最小值,求的取值范围.
    【答案】(1)极大值为,无极小值
    (2)
    【分析】(1)求导后,根据正负可得单调性,结合极值定义可求得结果;
    (2)由可得,令,可将表示为;构造函数,求导后,分别在和的情况下,讨论得到单调性,进而确定符合题意的的取值范围.
    【详解】(1)由题意知:定义域为,,
    ,,
    当时,;当时,;
    在上单调递增,在上单调递减;
    的极大值为,无极小值.
    (2)可化为,
    为单调递增函数,
    由可得:,即,
    令,则,,,,

    令,

    令,

    ①当时,恒成立,在上单调递增,
    ,即,在上单调递增,
    此时在上不存在最小值,即不存在最小值,不合题意;
    ②当时,若,则;若,则;
    在上单调递减,在上单调递增,
    又,,又,
    存在,使得,且当时,,即;当时,,即;
    在上单调递减,在上单调递增,
    ,即有最小值;
    综上所述:实数的取值范围为.
    【点睛】关键点点睛:本题考查利用导数求解函数极值、多变量问题的求解;求解多变量问题的关键是能够通过引入第三变量,将利用来表示,从而减少变量个数,将问题转化为关于的函数的单调性的讨论问题.
    5.(2023·山东青岛·统考二模)已知函数,.
    (1)讨论极值点的个数;
    (2)若恰有三个零点和两个极值点.
    (ⅰ)证明:;
    (ⅱ)若,且,证明:.
    【答案】(1)当时, 无极值点;当时,所以有两个极值点;
    (2)(ⅰ)证明见解析;(ⅱ)证明见解析.
    【分析】(1)先求导,对进行讨论,研究单调性可得函数的极值;
    (2)(i)由(1)知: ,且,,又得出,即可得证;
    (ii)易得,令,可得,要证明:,只需证:,只需证: (显然,易证),即证明:,又因为,所以,令,,利用导数证明即可.
    【详解】(1)由题知:,
    设函数,
    当时,开口向上,,
    所以,在上单调递减,无极值点;
    当时, 在上有两个解,
    又因为,
    所以在上单调递减,在上单调递增,在上单调递减.
    所以有两个极值点.
    综上:当时, 无极值点;当时,所以有两个极值点.
    (2)(i)由(1)知: ,且,
    又因为,
    所以.
    (ii)由(i)知:,,,
    所以,所以.
    令,,
    所以在上单调递减,在上单调递增.
    因为时,>0;时,

    相关试卷

    高考数学第一轮复习(新教材新高考)第04讲利用导数证明不等式(核心考点精讲精练)(学生版+解析):

    这是一份高考数学第一轮复习(新教材新高考)第04讲利用导数证明不等式(核心考点精讲精练)(学生版+解析),共75页。试卷主要包含了 4年真题考点分布, 命题规律及备考策略等内容,欢迎下载使用。

    高考数学第一轮复习(新教材新高考)第03讲指数与指数函数(核心考点精讲精练)(学生版+解析):

    这是一份高考数学第一轮复习(新教材新高考)第03讲指数与指数函数(核心考点精讲精练)(学生版+解析),共46页。试卷主要包含了 4年真题考点分布, 命题规律及备考策略,能结合指数函数比较指数式大小等内容,欢迎下载使用。

    高考数学第一轮复习(新教材新高考)第02讲导数与函数的单调性(核心考点精讲精练)(学生版+解析):

    这是一份高考数学第一轮复习(新教材新高考)第02讲导数与函数的单调性(核心考点精讲精练)(学生版+解析),共99页。试卷主要包含了 4年真题考点分布, 命题规律及备考策略等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map