所属成套资源:高考数学第一轮复习(新教材新高考)(核心考点精讲精练)(学生版
高考数学第一轮复习(新教材新高考)第03讲导数与函数的极值、最值(核心考点精讲精练)(学生版+解析)
展开
这是一份高考数学第一轮复习(新教材新高考)第03讲导数与函数的极值、最值(核心考点精讲精练)(学生版+解析),共81页。试卷主要包含了 4年真题考点分布, 命题规律及备考策略等内容,欢迎下载使用。
1. 4年真题考点分布
2. 命题规律及备考策略
【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较大,分值为12分
【备考策略】1.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件
2能够利用导数求函数的极大值、极小值以及在给定闭区间上的最大值、最小值
3体会导数与极大(小)值、最大(小)值的关系
【命题预测】本节内容是新高考卷的必考内容,会结合导数来判断或证明函数的单调性,从而求得函数的极值或给定区间上的最值,热点内容,需综合复习
知识讲解
函数的极值与导数
(1)函数的极小值与极小值点
若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,,而且在点x=a附近的左侧,右侧,则点a叫做函数的极小值点,f(a)叫做函数的极小值.
(2)函数的极大值与极大值点
若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,,而且在点x=b 附近的左侧,右侧,则点b叫做函数的极大值点,f(b)叫做函数的极大值.
(3)极值与导数的关系
是极值点
是极值点,即:是为极值点的必要非充分条件
函数的最值与导数
(1)函数f(x)在[a,b]上有最值的条件
如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
(2)求y=f(x)在[a,b]上的最大(小)值的步骤
①求函数y=f(x)在(a,b)内的极值;
②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
考点一、求函数的极值或极值点
1.(天津·高考真题)已知函数在上满足,当时取得极值.
(1)求的单调区间和极大值;
(2)证明:对任意、,不等式恒成立.
2.(全国·高考真题)已知函数(为自然对数的底数)
(1)若曲线在点处的切线平行于轴,求的值;
(2)求函数的极值;
(3)当时,若直线与曲线没有公共点,求的最大值.
3.(天津·高考真题)已知函数
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)已知函数的图象与函数的图象关于直线对称,证明当时,
(Ⅲ)如果,且,证明
4.(山东·高考真题)设函数,其中.
(Ⅰ)讨论函数极值点的个数,并说明理由;
(Ⅱ)若成立,求的取值范围.
1.(2023·湖北黄石·统考模拟预测)已知,函数,.
(1)求函数的单调区间和极值;
(2)设较小的零点为,证明:.
2.(2023·河北沧州·校考模拟预测)已知函数.
(1)求函数的极值点个数;
(2)若不等式在上恒成立,求可取的最大整数值.
3.(2023·江苏无锡·辅仁高中校考模拟预测)已知函数,.
(1)求函数的极值点;
(2)若恒成立,求实数的取值范围.
4.(2023·福建龙岩·统考模拟预测)设函数.
(1)求的极值;
(2)已知,有最小值,求的取值范围.
5.(2023·山东青岛·统考二模)已知函数,.
(1)讨论极值点的个数;
(2)若恰有三个零点和两个极值点.
(ⅰ)证明:;
(ⅱ)若,且,证明:.
6.(2023·浙江·校联考模拟预测)己知函数有三个极值点,其中.
(1)求的取值范围;
(2)求证:;
(3)求证:.
考点二、根据函数极值或极值点求参数值或范围
1.(2023·全国·统考高考真题)(多选)若函数既有极大值也有极小值,则( ).
A.B.C.D.
1.(2023·广东·校联考模拟预测)已知函数,若函数在处取得极小值,则的取值范围为 .
2.(2023·辽宁鞍山·统考模拟预测)已知函数有两个极值点,,且,则实数m的取值范围是 .
3.(2023·安徽阜阳·安徽省临泉第一中学校考三模)已知函数有两个极值点,则实数a的取值范围是 .
4.(2023·山东·沂水县第一中学校联考模拟预测)已知函数存在两个极值点,,则以下结论正确的为( )
A.B.
C.若,则D.
考点三、利用导数求函数最值
1.(2022·全国·统考高考真题)函数在区间的最小值、最大值分别为( )
A.B.C.D.
2.(2022·全国·统考高考真题)已知函数.
(1)当时,求的最大值;
(2)若恰有一个零点,求a的取值范围.
1.(2023·广东佛山·校考模拟预测)已知函数.
(1)求函数在区间上的最小值;
(2)判断函数的零点个数,并证明.
2.(2023·江苏南通·统考模拟预测)已知函数,其中a为实数.
(1)若,求函数在区间上的最小值;
(2)若函数在上存在两个极值点,,且.求证:.
3.(2023·浙江·校联考二模)设,已知函数有个不同零点.
(1)当时,求函数的最小值:
(2)求实数的取值范围;
(3)设函数的三个零点分别为、、,且,证明:存在唯一的实数,使得、、成等差数列.
4.(2023·福建福州·福州三中校考模拟预测)已知函数.
(1)求函数在上的最小值;
(2)证明:当时,.
5.(2023·湖南岳阳·统考一模)已知函数,,.
(1)讨论函数在区间上的最大值;
(2)确定k的所有可能取值,使得存在,对任意的,恒有.
6.(2023·江苏·二模)已知函数 .
(1)当时,求函数的单调递增区间
(2)若函数在的最小值为,求的最大值.
考点四、由函数最值求参数值或范围
1.(2022·全国·统考高考真题)当时,函数取得最大值,则( )
A.B.C.D.1
1.(2023·山东·山东省实验中学校考一模)若函数在区间上存在最小值,则整数的取值可以是 .
2.(2023·广东广州·广州六中校考三模)已知与有相同的最小值.
(1)求实数的值;
(2)已知,函数有两个零点,求证:.
【基础过关】
一、多选题
1.(2023·河北石家庄·统考三模)设函数的定义域为是的极大值点,以下结论一定正确的是( )
A.B.是的极大值点
C.是的极小值点D.是的极大值点
2.(2023·吉林通化·梅河口市第五中学校考模拟预测)设函数,则( )
A.是奇函数
B.当时,有最小值2
C.在区间上单调递减
D.有两个极值点
二、填空题
3.(2023·安徽六安·安徽省舒城中学校考模拟预测)已知实数成等比数列,且函数,当时取到极大值,则等于 .
三、解答题
4.(2023·福建福州·福建省福州第一中学校考模拟预测)已知函数在处取得极值-14.
(1)求a,b的值;
(2)求曲线在点处的切线方程;
(3)求函数在上的最值.
5.(2023·浙江温州·统考二模)已知函数,.
(1)若在处的切线与也相切,求的值;
(2)若,求函数的最大值.
6.(2023·江苏常州·常州市第三中学校考模拟预测)设函数.
(1)当时,求函数的最大值;
(2)当,,方程有唯一实数解,求正数的值.
7.(2023·安徽马鞍山·统考三模)已知函数
(1)当时,求函数的极值;
(2)当时,恒成立,求实数的取值范围.
8.(2023·辽宁丹东·统考二模)已知为函数的极值点.
(1)求;
(2)证明:当时,.
9.(2023·福建·统考模拟预测)已知函数.
(1)求的单调区间和极值;
(2)若有零点,求的最小值.
10.(2023·山东淄博·山东省淄博实验中学校考三模)已知函数.
(1)求曲线在点处的切线方程;
(2)求在区间上的最大值;
(3)设实数使得对恒成立,写出的最大整数值,并说明理由.
【能力提升】
1.(2023·重庆万州·统考模拟预测)已知函数.
(1)讨论的极值;
(2)当时,关于x的不等式在上恒成立,求实数的取值范围.
2.(2023·重庆万州·重庆市万州第三中学校考模拟预测)已知函数.
(1)若在区间上有极小值,求实数的取值范围;
(2)求证:.
3.(2023·全国·模拟预测)已知函数,.
(1)讨论函数的最值;
(2)若函数有两个极值点,求实数a的取值范围.
4.(2023·安徽合肥·合肥一六八中学校考模拟预测)已知函数,其中.
(1)若时,有极值,求的值;
(2)设,讨论的零点个数.
5.(2023·湖北武汉·武汉二中校联考模拟预测)已知函数.
(1)若的极大值为3,求实数的值;
(2)若,求实数的取值范围.
6.(2023·广东佛山·统考模拟预测)已知函数,其中.
(1)讨论函数极值点的个数;
(2)对任意的,都有,求实数的取值范围.
7.(2023·湖南长沙·长郡中学校考二模)已知函数,.
(1)当时,求函数的最小值;
(2)当时,不等式恒成立,求实数a的取值范围.
8.(2023·江苏淮安·江苏省郑梁梅高级中学校考模拟预测)已知函数,.
(1)若,证明:;
(2)若函数最大值为,求实数a的值.
9.(2023·湖北黄冈·黄冈中学校考三模)已知函数.
(1)当时,求函数在上的极值;
(2)用表示中的最大值,记函数,讨论函数在上的零点个数.
10.(2023·重庆·统考模拟预测)已知函数和在同一处取得相同的最大值.
(1)求实数a;
(2)设直线与两条曲线和共有四个不同的交点,其横坐标分别为(),证明:.
【真题感知】
一、单选题
1.(2021·全国·统考高考真题)设,若为函数的极大值点,则( )
A.B.C.D.
二、多选题
2.(2022·全国·统考高考真题)已知函数,则( )
A.有两个极值点B.有三个零点
C.点是曲线的对称中心D.直线是曲线的切线
三、填空题
3.(2021·全国·统考高考真题)函数的最小值为 .
四、解答题
4.(2023·全国·统考高考真题)(1)证明:当时,;
(2)已知函数,若是的极大值点,求a的取值范围.
5.(2021·北京·统考高考真题)已知函数.
(1)若,求曲线在点处的切线方程;
(2)若在处取得极值,求的单调区间,以及其最大值与最小值.
6.(2021·天津·统考高考真题)已知,函数.
(I)求曲线在点处的切线方程:
(II)证明存在唯一的极值点
(III)若存在a,使得对任意成立,求实数b的取值范围.
第03讲 导数与函数的极值、最值
(核心考点精讲精练)
1. 4年真题考点分布
2. 命题规律及备考策略
【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较大,分值为12分
【备考策略】1.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件
2能够利用导数求函数的极大值、极小值以及在给定闭区间上的最大值、最小值
3体会导数与极大(小)值、最大(小)值的关系
【命题预测】本节内容是新高考卷的必考内容,会结合导数来判断或证明函数的单调性,从而求得函数的极值或给定区间上的最值,热点内容,需综合复习
知识讲解
函数的极值与导数
(1)函数的极小值与极小值点
若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,,而且在点x=a附近的左侧,右侧,则点a叫做函数的极小值点,f(a)叫做函数的极小值.
(2)函数的极大值与极大值点
若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,,而且在点x=b 附近的左侧,右侧,则点b叫做函数的极大值点,f(b)叫做函数的极大值.
(3)极值与导数的关系
是极值点
是极值点,即:是为极值点的必要非充分条件
函数的最值与导数
(1)函数f(x)在[a,b]上有最值的条件
如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
(2)求y=f(x)在[a,b]上的最大(小)值的步骤
①求函数y=f(x)在(a,b)内的极值;
②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
考点一、求函数的极值或极值点
1.(天津·高考真题)已知函数在上满足,当时取得极值.
(1)求的单调区间和极大值;
(2)证明:对任意、,不等式恒成立.
【答案】(1)单调递增区间为、,单调递减区间为,极大值为;(2)证明见解析.
【分析】(1)由可求得,由题意得出可解出、的值,可得出函数的解析式,然后利用导数可求得函数的单调区间和极大值;
(2)求得函数在区间上的最大值,最小值,由此可得出,进而可证得结论.
【详解】(1),由,得,可得.
,,
由于函数在处取得极值,则,解得,
,
,从而.
当时,,则函数在上是增函数;
在时,,则函数在上是减函数;
当时,,则函数在上是增函数.
所以,函数在处取得极大值,即;
(2)由(1)知,函数在上是减函数,
当时,,.
所以,对任意、,不等式.
【点睛】本题考查利用导数求解函数的单调区间和极值,同时也考查了利用导数证明函数不等式,考查计算能力与推理能力,属于中等题.
2.(全国·高考真题)已知函数(为自然对数的底数)
(1)若曲线在点处的切线平行于轴,求的值;
(2)求函数的极值;
(3)当时,若直线与曲线没有公共点,求的最大值.
【答案】(1)(2)当时,函数无极小值;当,在处取得极小值,无极大值(3)的最大值为
【分析】(1)求出,由导数的几何意义,解方程即可;(2)解方程,注意分类讨论,以确定的符号,从而确定的单调性,得极大值或极小值(极值点多时,最好列表表示);(3)题意就是方程无实数解,即关于的方程在上没有实数解.一般是分类讨论,时,无实数解,时,方程变为,因此可通过求函数的值域来求得的范围.
【详解】(1)由,得.
又曲线在点处的切线平行于轴,
得,即,解得.
(2),
①当时,,为上的增函数,
所以函数无极值.
②当时,令,得,.
,;,.
所以在上单调递减,在上单调递增,
故在处取得极小值,且极小值为,无极大值.
综上,当时,函数无极小值
当,在处取得极小值,无极大值.
(3)当时,
令,
则直线:与曲线没有公共点,
等价于方程在上没有实数解.
假设,此时,,
又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.
又时,,知方程在上没有实数解.
所以的最大值为.
解法二:
(1)(2)同解法一.
(3)当时,.
直线:与曲线没有公共点,
等价于关于的方程在上没有实数解,即关于的方程:
(*)
在上没有实数解.
①当时,方程(*)可化为,在上没有实数解.
②当时,方程(*)化为.
令,则有.
令,得,
当变化时,的变化情况如下表:
当时,,同时当趋于时,趋于,
从而的取值范围为.
所以当时,方程(*)无实数解, 解得的取值范围是.
综上,得的最大值为.
考点:导数的几何意义,极值,导数与单调性、值域,方程根的分布.
3.(天津·高考真题)已知函数
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)已知函数的图象与函数的图象关于直线对称,证明当时,
(Ⅲ)如果,且,证明
【答案】(Ⅰ)f(x)在()内是增函数,在()内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)= (Ⅱ)见解析(Ⅲ)见解析
【详解】(Ⅰ)解:f’
令f’(x)=0,解得x=1
当x变化时,f’(x),f(x)的变化情况如下表
所以f(x)在()内是增函数,在()内是减函数.
函数f(x)在x=1处取得极大值f(1)且f(1)=
(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)
令F(x)=f(x)-g(x),即
于是
当x>1时,2x-2>0,从而’(x)>0,从而函数F(x)在[1,+∞)是增函数.
又F(1)=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).
(Ⅲ)证明:(1)
若
(2)若
根据(1)(2)得
由(Ⅱ)可知,>,则=,所以>,从而>.因为,所以,又由(Ⅰ)可知函数f(x)在区间(-∞,1)内事增函数,所以>,即>2.
4.(山东·高考真题)设函数,其中.
(Ⅰ)讨论函数极值点的个数,并说明理由;
(Ⅱ)若成立,求的取值范围.
【答案】(Ⅰ)见解析(Ⅱ)的取值范围是.
【详解】试题分析:(Ⅰ)先求,令
通过对 的取值的讨论,结合二次函数的知识,由导数的符号得到函数 的单调区间;(Ⅱ)根据(1)的结果这一特殊性,通过对参数的讨论确定的取值范围.
试题解析:函数的定义域为
令,
(1)当 时, , 在上恒成立
所以,函数在上单调递增无极值;
(2)当 时,
①当时, ,
所以,,函数在上单调递增无极值;
②当 时,
设方程的两根为
因为
所以,
由可得:
所以,当时, ,函数单调递增;
当时, ,函数单调递减;
当时, ,函数单调递增;
因此函数有两个极值点.
(3)当 时,
由可得:
当时, ,函数单调递增;
当时, ,函数单调递减;
因此函数有一个极值点.
综上:
当 时,函数在上有唯一极值点;
当时,函数在上无极值点;
当时,函数在上有两个极值点;
(Ⅱ)由(Ⅰ)知,
(1)当时,函数在上单调递增,
因为
所以,时, ,符合题意;
(2)当 时,由 ,得
所以,函数在上单调递增,
又,所以,时, ,符合题意;
(3)当 时,由 ,可得
所以 时,函数 单调递减;
又
所以,当时, 不符合题意;
(4)当时,设
因为时,
所以 在 上单调递增,
因此当时,
即:
可得:
当 时,
此时, 不合题意.
综上所述,的取值范围是
考点:1、导数在研究函数性质中的应用;2、分类讨论的思想.
1.(2023·湖北黄石·统考模拟预测)已知,函数,.
(1)求函数的单调区间和极值;
(2)设较小的零点为,证明:.
【答案】(1)单调递减区间为,单调递增区间为;极小值,无极大值
(2)证明见解析
【分析】(1)由导数法求极值及单调区间即可;
(2)先由零点存在定理说明存在两个零点,
法一:由导数法证,,结合函数单调性即可证明;
法二:由导数法证明证明当时,,再令代入不等式化简得证.
【详解】(1)因为,,所以,
当时,;当时,,所以函数的单调递减区间为,单调递增区间为,
故有极小值,无极大值;
(2)因为当时,,所以,
所以,
又时,;时,,
所以有两个零点 ;
法1:下面证明,,
设,
则,所以在上递增,
又时,,所以对成立,
所以得证 ,
,
令,则,,,∴.
设,,
则,所以在上递减,
所以,所以,
所以得证 ,
因为函数区间单调递减,
又,,,、、,
所以 ;
法2:下面证明当时,,
设,,
,
所以在上递增,
所以,所以,
再设,,
,
所以在上递增,
所以,所以,
综上,当时, ,
现有,所以,
故得,
故得,
所以 .
【点睛】证明零点所在区间问题:
(1)可结合零点存在定理说明在区间端点处异号及函数单调性证明;
(2)通过将结论不等式变形,构造成题设函数的形式,从而将问题转化为证明不等式成立. 如本题变形成,变形成,则可转化为证;
(3)证明不等关系可通过构造函数,结合导数法证明.
2.(2023·河北沧州·校考模拟预测)已知函数.
(1)求函数的极值点个数;
(2)若不等式在上恒成立,求可取的最大整数值.
【答案】(1)极值点个数为1
(2)4
【分析】(1)求出,然后证明只有一个变号零点即可;
(2)条件不等式可转化为,然后求出,分、两种情况得到的单调性,然后可得到成立,然后利用导数可分析出答案.
【详解】(1)已知,
可得
令,则,
函数单调递减,且当时,,故函数先增后减,
当时,,
其中,∴,∴
当时,,
∴函数只有一个零点,∴函数的极值点个数为1.
(2)变形,得,
整理得,
令,则,∵,∴,
若,则恒成立,即在区间上单调递增,
由,∴,∴,∴,此时可取的最大整数为2,
若,令,则,令,则,
所以在区间上单调递减,在区间上单调递增,
所以在区间上有最小值,,
于是问题转化为成立,求的最大值,
令,则,∵当时,,单调递减,
当时,单调递增,∴在处取得最大值,
∵,∴,∵,,
,此时可取的最大整数为4.
综上,可取的最大整数为4.
3.(2023·江苏无锡·辅仁高中校考模拟预测)已知函数,.
(1)求函数的极值点;
(2)若恒成立,求实数的取值范围.
【答案】(1)是的极大值点,无极小值点
(2)
【分析】(1)首先利用导数判断函数的单调区间,再确定函数的极值点;
(2)解法一,首先构造函数,,再根据函数的导数,判断函数的最大值,即可求解;解法二,首先证明,即可得,即,不等式恒成立,转化为,即可求解.
【详解】(1)由已知可得,函数的定义域为,且,
当时,;当时,,
所以的单调递增区间为,单调递减区间为,
所以是的极大值点,无极小值点.
(2)解法一:设,,
则,
令,,则对任意恒成立,
所以在上单调递减.
又,,
所以,使得,即,则,即.
因此,当时,,即,则单调递增;
当时,,即,则单调递减,
故,解得,
所以当时,恒成立.
解法二:令,,当时,;当时,,
所以在上单调递减,在上单调递增,
所以,即.
因为,所以,当时等号成立,
即,当时等号成立,
所以的最小值为1.
若恒成立,则,
所以当时,恒成立.
4.(2023·福建龙岩·统考模拟预测)设函数.
(1)求的极值;
(2)已知,有最小值,求的取值范围.
【答案】(1)极大值为,无极小值
(2)
【分析】(1)求导后,根据正负可得单调性,结合极值定义可求得结果;
(2)由可得,令,可将表示为;构造函数,求导后,分别在和的情况下,讨论得到单调性,进而确定符合题意的的取值范围.
【详解】(1)由题意知:定义域为,,
,,
当时,;当时,;
在上单调递增,在上单调递减;
的极大值为,无极小值.
(2)可化为,
为单调递增函数,
由可得:,即,
令,则,,,,
,
令,
,
令,
;
①当时,恒成立,在上单调递增,
,即,在上单调递增,
此时在上不存在最小值,即不存在最小值,不合题意;
②当时,若,则;若,则;
在上单调递减,在上单调递增,
又,,又,
存在,使得,且当时,,即;当时,,即;
在上单调递减,在上单调递增,
,即有最小值;
综上所述:实数的取值范围为.
【点睛】关键点点睛:本题考查利用导数求解函数极值、多变量问题的求解;求解多变量问题的关键是能够通过引入第三变量,将利用来表示,从而减少变量个数,将问题转化为关于的函数的单调性的讨论问题.
5.(2023·山东青岛·统考二模)已知函数,.
(1)讨论极值点的个数;
(2)若恰有三个零点和两个极值点.
(ⅰ)证明:;
(ⅱ)若,且,证明:.
【答案】(1)当时, 无极值点;当时,所以有两个极值点;
(2)(ⅰ)证明见解析;(ⅱ)证明见解析.
【分析】(1)先求导,对进行讨论,研究单调性可得函数的极值;
(2)(i)由(1)知: ,且,,又得出,即可得证;
(ii)易得,令,可得,要证明:,只需证:,只需证: (显然,易证),即证明:,又因为,所以,令,,利用导数证明即可.
【详解】(1)由题知:,
设函数,
当时,开口向上,,
所以,在上单调递减,无极值点;
当时, 在上有两个解,
又因为,
所以在上单调递减,在上单调递增,在上单调递减.
所以有两个极值点.
综上:当时, 无极值点;当时,所以有两个极值点.
(2)(i)由(1)知: ,且,
又因为,
所以.
(ii)由(i)知:,,,
所以,所以.
令,,
所以在上单调递减,在上单调递增.
因为时,>0;时,
相关试卷
这是一份高考数学第一轮复习(新教材新高考)第04讲利用导数证明不等式(核心考点精讲精练)(学生版+解析),共75页。试卷主要包含了 4年真题考点分布, 命题规律及备考策略等内容,欢迎下载使用。
这是一份高考数学第一轮复习(新教材新高考)第03讲指数与指数函数(核心考点精讲精练)(学生版+解析),共46页。试卷主要包含了 4年真题考点分布, 命题规律及备考策略,能结合指数函数比较指数式大小等内容,欢迎下载使用。
这是一份高考数学第一轮复习(新教材新高考)第02讲导数与函数的单调性(核心考点精讲精练)(学生版+解析),共99页。试卷主要包含了 4年真题考点分布, 命题规律及备考策略等内容,欢迎下载使用。