搜索
    上传资料 赚现金
    英语朗读宝

    【新高考题型】8+3+3高三数学小题速练“8+3+3”小题速练(20)(学生版+解析)

    【新高考题型】8+3+3高三数学小题速练“8+3+3”小题速练(20)(学生版+解析)第1页
    【新高考题型】8+3+3高三数学小题速练“8+3+3”小题速练(20)(学生版+解析)第2页
    【新高考题型】8+3+3高三数学小题速练“8+3+3”小题速练(20)(学生版+解析)第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【新高考题型】8+3+3高三数学小题速练“8+3+3”小题速练(20)(学生版+解析)

    展开

    这是一份【新高考题型】8+3+3高三数学小题速练“8+3+3”小题速练(20)(学生版+解析),共11页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
    1.若角的终边过点,则( )
    A. B. C. D.
    2.若的展开式中常数项的系数是15,则( )
    A. 2B. 1C. D.
    3.已知是空间中三条互不重合的直线,是两个不重合的平面,则下列说法正确的是( )
    A. ,则B. 且,则
    C. ,则D. ,则
    4.已知向量,,则“”是“向量与的夹角为锐角”的( )
    A. 充要条件B. 充分不必要条件
    C. 必要不充分条件D. 既不充分也不必要条件
    4.已知是等比数列的前项和,且,,则( )
    A. 11B. 13C. 15D. 17
    5.一组数据满足,若去掉后组成一组新数据.则新数据与原数据相比( )
    A. 极差变大B. 平均数变大C. 方差变小D. 第25百分位数变小
    6.若函数有4个零点,则正数的取值范围是( )
    A. B. C. D.
    7.已知棱长为8的正四面体,沿着四个顶点的方向各切下一个棱长为2的小正四面体(如图),剩余中间部分的八面体可以装入一个球形容器内(容器壁厚度忽略不计),则该球形容器表面积的最小值为( )
    A. B. C. D.
    8.已知双曲线:的左右焦点分别为,过点作直线交双曲线右支于两点(点在轴上方),使得.若,则双曲线的离心率为( )
    A. B. C. D. 2
    二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9.下列式子中最小值为4的是( )
    A. B.
    C. D.
    10.在平面直角坐标系中,已知抛物线的焦点为F,准线l与x轴的交点为A,点M,N在C上,且,则( )
    A. B. 直线MN的斜率为
    C. D.
    11.若是定义在R上的偶函数,其图象关于直线对称,且对任意,都有,则下列说法正确的是( )
    A. 一定为正数
    B. 2是的一个周期
    C. 若,则
    D. 若在上单调递增,则
    三、填空题:本题共3小题,每小题5分,共15分.
    12.设,为虚数单位.若集合,且,则__________.
    13.已知,则________
    14.已知函数,设曲线在点处切线的斜率为,若均不相等,且,则的最小值为______
    2024届高三二轮复习“8+3+3”小题强化训练(20)
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.若角的终边过点,则( )
    A. B. C. D.
    【答案】A
    【解析】因为角的终边过点,所以,所以.
    故选:A
    2.若的展开式中常数项的系数是15,则( )
    A. 2B. 1C. D.
    【答案】C
    【解析】二项展开式通项为
    则时常数项为.
    故选:C
    3.已知是空间中三条互不重合的直线,是两个不重合的平面,则下列说法正确的是( )
    A. ,则B. 且,则
    C. ,则D. ,则
    【答案】B
    【解析】A. 若,则或,故错误;
    B. 若且,则,故正确;
    C. 若,则或或与相交,故错误;
    D. 若,则或l与n异面,故错误.
    故选:B
    4.已知向量,,则“”是“向量与的夹角为锐角”的( )
    A. 充要条件B. 充分不必要条件
    C. 必要不充分条件D. 既不充分也不必要条件
    【答案】C
    【解析】若,则,解得.
    若向量与的夹角为锐角,则且,所以且,解得.
    故“”是“向量与的夹角为锐角”的必要不充分条件.
    故选:C.
    4.已知是等比数列的前项和,且,,则( )
    A. 11B. 13C. 15D. 17
    【答案】C
    【解析】因为是等比数列,是等比数列的前项和,
    所以成等比数列,且,
    所以,
    又因为,,
    所以,即,解得或,
    因为,
    所以,
    故选:C.
    5.一组数据满足,若去掉后组成一组新数据.则新数据与原数据相比( )
    A. 极差变大B. 平均数变大C. 方差变小D. 第25百分位数变小
    【答案】C
    【解析】由于,
    故,,……,,,
    A选项,原来的极差为,去掉后,极差为,极差变小,A错误;
    B选项,原来的平均数为,
    去掉后的平均数为,平均数不变,B错误;
    C选项,原来的方差为,
    去掉后的方差为,
    方差变小,C正确;
    D选项,,从小到大排列,选第3个数作为第25百分位数,即,
    ,故从小到大排列,选择第3个数作为第25百分位数,即,
    由于,第25百分位数变大,D错误.
    故选:C
    6.若函数有4个零点,则正数的取值范围是( )
    A. B. C. D.
    【答案】B
    【解析】当时,令,即,即,
    因为函数与的图象仅有一个公共点,如图所示,

    所以时,函数只有一个零点,
    又由函数有4个零点,
    所以时,方程有三个零点,如图所示,

    因为,可得,则满足,
    解得,即实数的取值范围为.
    故选:B.
    7.已知棱长为8的正四面体,沿着四个顶点的方向各切下一个棱长为2的小正四面体(如图),剩余中间部分的八面体可以装入一个球形容器内(容器壁厚度忽略不计),则该球形容器表面积的最小值为( )
    A. B. C. D.
    【答案】D
    【解析】如图:
    设为正四面体的外接球球心,为的中心,为的中心, 为的中点,
    因为正四面体棱长为8,易得平面,
    易得,平面,平面,
    则,
    由正四面体外接球球心为,则在,则为外接球半径,
    由得,解得,
    即,
    在正四面体中,易得,,所以,
    则该八面体的外接球半径,
    所以该球形容器表面积的最小值为,
    故选:D.
    8.已知双曲线:的左右焦点分别为,过点作直线交双曲线右支于两点(点在轴上方),使得.若,则双曲线的离心率为( )
    A. B. C. D. 2
    【答案】D
    【解析】如图所示,取的中点,连接,可得,
    由,可得,所以,则,
    可得,
    则,
    在与中,
    由余弦定理可得:,
    因为,所以,
    即,解得,即.
    故选:D.
    二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9.下列式子中最小值为4的是( )
    A. B.
    C. D.
    【答案】BCD
    【解析】对于选项A:,
    当且仅当,即当且仅当时等号成立,
    但不成立,所以的最小值不为4,故A错误;
    对于选项B:因为,则,
    当且仅当,即时,等号成立,
    所以的最小值为,故B正确;
    对于选项C:

    当时,取得最小值4,故C成立;
    对于选项D:由题意,
    则,

    当且仅当,即时,等号成立,故D正确.
    故选:BCD.
    10.在平面直角坐标系中,已知抛物线的焦点为F,准线l与x轴的交点为A,点M,N在C上,且,则( )
    A. B. 直线MN的斜率为
    C. D.
    【答案】ABC
    【解析】由,故为中点,又为中点,
    故,故A正确;
    由,故,,设,则,
    故有,解得,
    即、,
    则,故B正确;
    ,故C正确;
    ,,则,故D错误.
    故选:ABC.
    11.若是定义在R上的偶函数,其图象关于直线对称,且对任意,都有,则下列说法正确的是( )
    A. 一定为正数
    B. 2是的一个周期
    C. 若,则
    D. 若在上单调递增,则
    【答案】BCD
    【解析】因为符合条件,故A错误;
    因为偶函数的图像关于直线对称,所以,故B正确;
    因为对任意,,都有,所以对任意,取得;
    若,即,故,
    由2是的周期得,故C正确;
    假设,由及,,得,,
    故,这与在上单调递增矛盾,故D正确.
    故选:BCD
    三、填空题:本题共3小题,每小题5分,共15分.
    12.设,为虚数单位.若集合,且,则__________.
    【答案】
    【解析】因为,,
    所以,解得.
    故答案为:.
    13.已知,则________
    【答案】
    【解析】由题,
    得,
    则或,
    因为,所以,
    .
    故答案为:
    14.已知函数,设曲线在点处切线的斜率为,若均不相等,且,则的最小值为______.
    【答案】18
    【解析】由于,
    故,
    故,,


    由,得,
    由,即,知位于之间,
    不妨设,则,
    故,
    当且仅当,即时等号成立,
    故则的最小值为18,
    故答案为:18

    相关试卷

    【二轮复习】高考数学“8+3+3”小题强化训练20(新高考九省联考题型).zip:

    这是一份【二轮复习】高考数学“8+3+3”小题强化训练20(新高考九省联考题型).zip,文件包含二轮复习高中数学“8+3+3”小题强化训练20新高考九省联考题型原卷版docx、二轮复习高中数学“8+3+3”小题强化训练20新高考九省联考题型解析版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    2024高考数学“8+3+3”小题强化训练(新高考九省联考题型)(原卷及解析版):

    这是一份2024高考数学“8+3+3”小题强化训练(新高考九省联考题型)(原卷及解析版),文件包含“8+3+3”小题强化训练10新高考九省联考题型原卷版docx、“8+3+3”小题强化训练18-2024届高三数学二轮复习《8+3+3》小题强化训练新高考九省联考题型原卷版docx、“8+3+3”小题强化训练25-2024届高三数学二轮复习《8+3+3》小题强化训练新高考九省联考题型原卷版docx、“8+3+3”小题强化训练9新高考九省联考题型原卷版docx、“8+3+3”小题强化训练2新高考九省联考题型原卷版docx、“8+3+3”小题强化训练15新高考九省联考题型原卷版docx、“8+3+3”小题强化训练16新高考九省联考题型原卷版docx、“8+3+3”小题强化训练6新高考九省联考题型原卷版docx、“8+3+3”小题强化训练5新高考九省联考题型原卷版docx、“8+3+3”小题强化训练22新高考九省联考题型原卷版docx、“8+3+3”小题强化训练21新高考九省联考题型原卷版docx、“8+3+3”小题强化训练20新高考九省联考题型原卷版docx、“8+3+3”小题强化训练3新高考九省联考题型原卷版docx、“8+3+3”小题强化训练1新高考九省联考题型原卷版docx、“8+3+3”小题强化训练4新高考九省联考题型原卷版docx、“8+3+3”小题强化训练19-2024届高三数学二轮复习《8+3+3》小题强化训练新高考九省联考题型原卷版docx、“8+3+3”小题强化训练17-2024届高三数学二轮复习《8+3+3》小题强化训练新高考九省联考题型原卷版docx、“8+3+3”小题强化训练24-2024届高三数学二轮复习《8+3+3》小题强化训练新高考九省联考题型原卷版docx、“8+3+3”小题强化训练7新高考九省联考题型原卷版docx、“8+3+3”小题强化训练14新高考九省联考题型原卷版docx、“8+3+3”小题强化训练8新高考九省联考题型原卷版docx、“8+3+3”小题强化训练13新高考九省联考题型原卷版docx、“8+3+3”小题强化训练12新高考九省联考题型原卷版docx、“8+3+3”小题强化训练11新高考九省联考题型原卷版docx、“8+3+3”小题强化训练23-2024届高三数学二轮复习《8+3+3》小题强化训练新高考九省联考题型原卷版docx、“8+3+3”小题强化训练5新高考九省联考题型解析版docx、“8+3+3”小题强化训练6新高考九省联考题型解析版docx、“8+3+3”小题强化训练8新高考九省联考题型解析版docx、“8+3+3”小题强化训练2新高考九省联考题型解析版docx、“8+3+3”小题强化训练9新高考九省联考题型解析版docx、“8+3+3”小题强化训练18新高考九省联考题型解析版docx、“8+3+3”小题强化训练11新高考九省联考题型解析版docx、“8+3+3”小题强化训练12新高考九省联考题型解析版docx、“8+3+3”小题强化训练10新高考九省联考题型解析版docx、“8+3+3”小题强化训练20新高考九省联考题型解析版docx、“8+3+3”小题强化训练16新高考九省联考题型解析版docx、“8+3+3”小题强化训练13新高考九省联考题型解析版docx、“8+3+3”小题强化训练7新高考九省联考题型解析版docx、“8+3+3”小题强化训练14新高考九省联考题型解析版docx、“8+3+3”小题强化训练15新高考九省联考题型解析版docx、“8+3+3”小题强化训练21新高考九省联考题型解析版docx、“8+3+3”小题强化训练17新高考九省联考题型解析版docx、“8+3+3”小题强化训练3新高考九省联考题型解析版docx、“8+3+3”小题强化训练1新高考九省联考题型解析版docx、“8+3+3”小题强化训练25-2024届高三数学二轮复习《8+3+3》小题强化训练新高考九省联考题型解析版docx、“8+3+3”小题强化训练22新高考九省联考题型解析版docx、“8+3+3”小题强化训练24-2024届高三数学二轮复习《8+3+3》小题强化训练新高考九省联考题型解析版docx、“8+3+3”小题强化训练4新高考九省联考题型解析版docx、“8+3+3”小题强化训练19新高考九省联考题型解析版docx、“8+3+3”小题强化训练23-2024届高三数学二轮复习《8+3+3》小题强化训练新高考九省联考题型解析版docx等50份试卷配套教学资源,其中试卷共268页, 欢迎下载使用。

    2024高考数学专题-“8+3+3”小题强化训练(20)(新高考九省联考题型)(原卷+解析版):

    这是一份2024高考数学专题-“8+3+3”小题强化训练(20)(新高考九省联考题型)(原卷+解析版),文件包含“8+3+3”小题强化训练20新高考九省联考题型原卷版docx、“8+3+3”小题强化训练20新高考九省联考题型解析版docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map