搜索
    上传资料 赚现金
    英语朗读宝

    专题25 解直角三角形(含勾股定理)及其应用-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题25 解直角三角形(含勾股定理)及其应用(原卷版) .doc
    • 解析
      专题25 解直角三角形(含勾股定理)及其应用(解析版) .doc
    专题25 解直角三角形(含勾股定理)及其应用(原卷版) 第1页
    专题25 解直角三角形(含勾股定理)及其应用(原卷版) 第2页
    专题25 解直角三角形(含勾股定理)及其应用(原卷版) 第3页
    专题25 解直角三角形(含勾股定理)及其应用(解析版) 第1页
    专题25 解直角三角形(含勾股定理)及其应用(解析版) 第2页
    专题25 解直角三角形(含勾股定理)及其应用(解析版) 第3页
    还剩7页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题25 解直角三角形(含勾股定理)及其应用-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)

    展开

    这是一份专题25 解直角三角形(含勾股定理)及其应用-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题25解直角三角形含勾股定理及其应用原卷版doc、专题25解直角三角形含勾股定理及其应用解析版doc等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
    一、选择题
    1. (2024四川眉山)如图,图1是北京国际数学家大会的会标,它取材于我国古代数学家赵爽的“弦图”,是由四个全等的直角三角形拼成.若图1中大正方形的面积为24,小正方形的面积为4,现将这四个直角三角形拼成图2,则图2中大正方形的面积为( )
    A. 24B. 36C. 40D. 44
    2. (2024甘肃临夏)如图,在中,,,则的长是( )
    A. 3B. 6C. 8D. 9
    3. (2024四川达州)如图,由8个全等的菱形组成的网格中,每个小菱形的边长均为2,,其中点,,都在格点上,则的值为( )
    A. 2B. C. D. 3
    4. (2024四川德阳)某校学生开展综合实践活动,测量一建筑物的高度,在建筑物旁边有一高度为10米的小楼房,小李同学在小楼房楼底处测得处的仰角为,在小楼房楼顶处测得处的仰角为.(在同一平面内,在同一水平面上),则建筑物的高为( )米
    A. 20B. 15C. 12D.
    5. (2024深圳)如图,为了测量某电子厂的高度,小明用高的测量仪测得的仰角为,小军在小明的前面处用高的测量仪测得的仰角为,则电子厂的高度为( )(参考数据:,,)
    A. B. C. D.
    6. (2024安徽省)如图,在中,,点在的延长线上,且,则的长是( )

    A. B. C. D.
    二、填空题
    1. (2024深圳)如图,在中,,,D上一点,且满足,过D作交延长线于点E,则________.
    2. (2024内蒙古赤峰)综合实践课上,航模小组用无人机测量古树的高度.如图,点C处与古树底部A处在同一水平面上,且米,无人机从C处竖直上升到达D处,测得古树顶部B的俯角为,古树底部A的俯角为,则古树AB的高度约为________米(结果精确到0.1米;参考数据:,,).
    3. (2024江西省)将图所示的七巧板,拼成图所示的四边形,连接,则______.
    4. (2024江苏盐城)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面的点P处,测得教学楼底端点A的俯角为,再将无人机沿教学楼方向水平飞行至点Q处,测得教学楼顶端点B的俯角为,则教学楼的高度约为________m.(精确到,参考数据:,,)

    5. (2024黑龙江绥化)如图,用热气球的探测器测一栋楼的高度,从热气球上的点测得该楼顶部点的仰角为,测得底部点的俯角为,点与楼的水平距离,则这栋楼的高度为______m(结果保留根号).
    6. (2024武汉市)黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼的高度,具体过程如下:如图,将无人机垂直上升至距水平地面的C处,测得黄鹤楼顶端A的俯角为,底端B的俯角为,则测得黄鹤楼的高度是__________m.(参考数据:)
    7. (2024四川达州)如图,在中,.点在线段上,.若,,则的面积是______.
    8. (2024四川眉山)如图,斜坡的坡度,在斜坡上有一棵垂直于水平面的大树,当太阳光与水平面的夹角为时,大树在斜坡上的影子长为10米,则大树的高为______米.
    三、解答题
    1. (2024甘肃临夏)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度的实践活动.为乾元塔的顶端,,点,在点的正东方向,在点用高度为1.6米的测角仪(即米)测得点仰角为,向西平移14.5米至点,测得点仰角为,请根据测量数据,求乾元塔的高度.(结果保留整数,参考数据:,,)
    2. (2024甘肃威武)习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒垂直于地面,测角仪,在两侧,,点C与点E相距 (点C,H,E在同一条直线上),在D处测得简尖顶点A的仰角为,在F处测得筒尖顶点A的仰角为.求风电塔筒的高度.(参考数据:,,.)
    3. (2024河北省)中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离,仰角为;淇淇向前走了后到达点D,透过点P恰好看到月亮,仰角为,如图是示意图.已知,淇淇的眼睛与水平地面的距离,点P到的距离,的延长线交于点E.(注:图中所有点均在同一平面)
    (1)求的大小及的值;
    (2)求的长及的值.
    4. (2024河南省)如图1,塑像在底座上,点D是人眼所在的位置.当点B高于人的水平视线时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A,B两点的圆与水平视线相切时(如图2),在切点P处感觉看到的塑像最大,此时为最大视角.
    (1)请仅就图2的情形证明.
    (2)经测量,最大视角为,在点P处看塑像顶部点A的仰角为,点P到塑像的水平距离为.求塑像的高(结果精确到.参考数据:).
    5. (2024江苏苏州) 图①是某种可调节支撑架,为水平固定杆,竖直固定杆,活动杆可绕点A旋转,为液压可伸缩支撑杆,已知,,.
    (1)如图②,当活动杆处于水平状态时,求可伸缩支撑杆的长度(结果保留根号);
    (2)如图③,当活动杆绕点A由水平状态按逆时针方向旋转角度,且(为锐角),求此时可伸缩支撑杆的长度(结果保留根号).
    6. (2024山东威海)某校九年级学生开展利用三角函数解决实际问题的综合与实践活动,活动之一是测量某护堤石坝与地平面的倾斜角.测量报告如下表(尚不完整)
    (1)设,,,,,,,,请根据表中的测量示意图,从以上线段中选出你认为需要测量的数据,把表示数据的小写字母填写在“测量数据”一栏.
    (2)根据()中选择的数据,写出求的一种三角函数值的推导过程.
    (3)假设,,,根据()中的推导结果,利用计算器求出的度数,你选择的按键顺序为________.
    7. (2024天津市)综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔的高度(如图①).某学习小组设计了一个方案:如图②,点依次在同一条水平直线上,,垂足为.在处测得桥塔顶部的仰角()为,测得桥塔底部的俯角()为,又在处测得桥塔顶部的仰角()为.
    (1)求线段的长(结果取整数);
    (2)求桥塔的高度(结果取整数).参考数据:.
    8. (2024重庆市B)如图,,,,分别是某公园四个景点,在的正东方向,在的正北方向,且在的北偏西方向,在的北偏东方向,且在的北偏西方向,千米.(参考数据:,,)

    (1)求的长度(结果精确到千米);
    (2)甲、乙两人从景点出发去景点,甲选择的路线为:,乙选择的路线为:.请计算说明谁选择的路线较近?
    9. (2024四川乐山)我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:
    平地秋千未起,踏板一尺离地.
    送行二步与人齐,五尺人高曾记.
    仕女佳人争蹴,终朝笑语欢嬉.
    良工高士素好奇,算出索长有几?
    词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)
    (1)如图1,请你根据词意计算秋千绳索的长度;
    (2)如图2,将秋千从与竖直方向夹角为α的位置释放,秋千摆动到另一侧与竖直方向夹角为β的地方,两次位置的高度差.根据上述条件能否求出秋千绳索的长度?如果能,请用含α、β和h的式子表示;如果不能,请说明理由.
    10. (2024四川凉山)为建设全域旅游西昌,加快旅游产业发展.年月日位于西昌主城区东部的历史风貌核心区唐园正式开园,坐落于唐园内的怀远塔乃唐园至高点,为七层密檐式八角砖混结构阁楼式塔楼,建筑面积为平方米,塔顶金碧辉煌,为“火珠垂莲”窣()堵坡造型.某校为了让学生进一步了解怀远塔,组织九年级()班学生利用综合实践课测量怀远塔的高度.小江同学站在如图所示的怀远塔前的平地上点处,测得塔顶的仰角为,眼睛距离地面,向塔前行,到达点处,测得塔顶的仰角为,求塔高.(参考数据:,结果精确到)

    11. (2024四川泸州)如图,海中有一个小岛C,某渔船在海中的A点测得小岛C位于东北方向上,该渔船由西向东航行一段时间后到达B点,测得小岛C位于北偏西方向上,再沿北偏东方向继续航行一段时间后到达D点,这时测得小岛C位于北偏西方向上.已知A,C相距30n mile.求C,D间的距离(计算过程中的数据不取近似值).
    课题
    测量某护堤石坝与地平面的倾斜角
    成员
    组长:××× 组员:×××,×××,×××
    测量工具
    竹竿,米尺
    测量示意图
    说明:是一根笔直的竹竿.点是竹竿上一点.线段的长度是点到地面的距离.是要测量的倾斜角.
    测量数据
    ……
    ……

    相关试卷

    专题28 概率-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版):

    这是一份专题28 概率-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题28概率原卷版doc、专题28概率解析版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    专题27 统计-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版):

    这是一份专题27 统计-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题27统计原卷版doc、专题27统计解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    专题22 图形的相似(含位似)-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版):

    这是一份专题22 图形的相似(含位似)-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题22图形的相似含位似原卷版doc、专题22图形的相似含位似解析版doc等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map