数学八年级上册3 勾股定理的应用精品课后测评
展开知识导图
知识清单
知识点1.勾股定理的应用
(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.
(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.
②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.
③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.
④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.
知识点2.平面展开-最短路径问题
(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.
题型强化
题型一.勾股定理的应用
1.(2024春•德城区月考)某扇门的规格是,下列规格的长方形薄木板不能从该扇门通过的是
A.B.C.D.
2.(2024春•伊犁州期末)如图,受台风影响,马路边一棵大树在离地面处断裂,大树顶端落在离底部处,则大树折断之前高为 .
3.(2023秋•沈丘县期末)在甲村至乙村的公路旁有一块山地正在开发,现有一处需要爆破.已知点与公路上的停靠站的距离为600米,与公路上另一停靠站的距离为800米,且,如图,为了安全起见,爆破点周围半径400米范围内不得进入.问在进行爆破时,公路段是否有危险,是否需要暂时封锁?请通过计算进行说明.
题型二.平面展开-最短路径问题
4.(2024春•蓬江区校级期末)今年9月22日是第三个中国农民丰收节,小彬用打印机制作了一个底面周长为,高为的圆柱粮仓模型,如图是底面直径,是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过,两点(接头不计),则装饰带的长度最短为
A.B.C.D.
5.(2024春•桦甸市期末)如图是一个棱长为6的正方体木箱,点在上底面的棱上,,一只蚂蚁从点出发沿木箱表面爬行到点,则蚂蚁爬行的最短路程是 .
6.(2024春•淮滨县期中)如图,圆柱形容器中,高为,底面周长为,在容器内壁离容器底部的点处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿与蚊子相对的点处,求壁虎捕捉蚊子的最短距离.(容器厚度忽略不计)
分层练习
一、单选题
1.要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯( )米.
A.17B.13C.12D.5
2.有两棵树,一棵高,另一棵高,两树相距.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )
A.B.C.D.
3.如图,一棵树在离地面米处断裂,树的顶部落在离底部米处,树折断之前有( )米
A.B.C.D.4
4.某兴趣小组要测量学校旗杆的高度,他们发现系在旗杆顶端的绳子刚好垂到地面,若紧拉绳子的末端向后退后发现绳子末端到地面的距离为,则旗杆的高度是( )
A.B.C.D.
5.如图,原来从A村到B村,需要沿路A→C→B()绕过两地间的一片湖,在A, B间建好桥后,就可直接从A村到B村.已知,,那么,建好桥后从 A村到B村比原来减少的路程为( )
A.2kmB.4kmC.10 kmD.14 km
6.如图,甲货船以的速度从港口A出发向东北方向航行,乙货船以的速度同时从港口A出发向东南方向航行,离开港口时两船相距( )
A.B.C.D.
7.“今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问:水深几何?”这是我国数学史上的“葭生池中”问题.即,,,则( )
A.8B.10C.12D.13
8.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米,如果梯子的顶端下滑了4米,那么梯子的底部在水平方向滑动了多少米?( )
A.8米B.6米C.10米D.4米
9.某地区要在公路上建一个蔬菜批发厂E,使得C,D两村庄到E的距离相等,已知,,.于点A,于点B,则的长是( )
A.B.C.D.
10.如图是一个三级台阶,它的每一级的长、宽、高分别为.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,则蚂蚁沿着台阶面爬行到点B的最短路程为( )
A.B.C.D.
二、填空题
11.如图,要将楼梯铺上地毯,则需要 米的地毯.
12.一个圆柱形的铁桶,底面直径为,高为,则桶内所能容下的木棒(不考虑粗细)最长可以为 .
13.飞机在空中水平飞行,某一时刻刚好飞到一个站着不动的女孩头顶正上方处,过了秒,飞机距离这个女孩头顶,则飞机每秒飞行了 .
14.如图,某人欲垂直横渡一条河,由于水流的影响,他实际上岸地点C偏离了想要到达的B点(即),其结果是他在水中实际游了(即),则该河处的宽度是 .
15.如图,甲、乙两船同时从港口出发,甲船以海里时的速度沿北偏东方向航行,乙船沿南偏东方向航行,小时后,甲船到达岛,乙船到达岛,若,两岛相距海里,乙船的速度是 海里时.
16.《九章算术》中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意:有一根竹子原来高1丈(1丈尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,则可列方程: .
17.如图,一道墙高6尺,一根木棒靠于墙上,木棒上端与墙头齐平. 若木棒下端向右滑,则木棒上端会随着往下滑,当木棒下端向右滑2尺到D处时,木棒上端恰好落到地上B处,则木棒长 尺.
18.如图,某超市为了吸引顾客,在超市门口离地高的墙上,装有一个由传感器控制的门铃A,如①图所示,人只要移至该门口及以内时(图②中),门铃就会自动发出语音“欢迎光临”.②图所示,一个身高的学生走到D处,门铃恰好自动响起,则该学生头顶C到门铃A的距离为 .
三、解答题
19.如图,有两棵树,一棵高6m,另一棵高2m,两树相距5m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?(结果精确到0.1m)
20.2022年第3号台风“退芭”于7月2日15时前后在广东电白登陆,给当地造成了巨大损失.如图,一棵垂直于地面且高度为16米的“风景树”被台风折断,树顶A落在离树底部C的8米处,求这棵树在离地面多高处被折断.
21.一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?
22.如图,小区A与公路l的距离米,小区B与公路l的距离米,已知米.
(1)政府准备在公路边建造一座公交站台Q,使Q到A、B两小区的路程相等,求的长;
(2)现要在公路旁建造一利民超市P,使P到A、B两小区的路程之和最短,求的最小值,求出此最小值.
23.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行㧒速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方60米处,过了5秒后,测得小汽车与车速检测仪间距离为100米,这辆小汽车超速了吗?
24.如图,长方体的长,宽,高,三只蚂蚁沿长方体的表面同时以相同的速度从点出发到点处.蚂蚁甲的行走路径为翻过棱后到达点处(即),蚂蚁乙的行走路径为翻过棱后到达点处(即),蚂蚁丙的行走路径为翻过棱后到达点处(即).
(1)甲、乙、丙三只蚂蚁的行走路程的最小值的平方分别是多少?
(2)若三只蚂蚁都走自己的最短路径,请判断:哪只蚂蚁最先到达?哪只蚂蚁最后到达?
25.2023年7月五号台风“杜苏芮”登陆,使我国很多地区受到严重影响,据报道,这是今年以来对我国影响最大的台风,风力影响半径(即以台风中心为圆心,为半径的圆形区域都会受台风影响),如图,线段是台风中心从C市向西北方向移动到B市的大致路线,A是某个大型农场,且.若A,C之间相距,A,B之间相距.
(1)判断农场A是否会受到台风的影响,请说明理由.
(2)若台风中心的移动速度为,则台风影响该农场持续时间有多长?
26.某实践探究小组在放风筝时想测量风筝离地面的垂直高度,通过勘测,得到如下记录表:
数据处理组得到上面数据以后做了认真分析,他们发现根据勘测组的全部数据就可以计算出风筝离地面的垂直高度.请完成以下任务.
(1)已知:如图,在中,,求线段的长.
(2)如果小明想要风筝沿方向再上升12米,长度不变,则他应该再放出多少米线?测量示意图
测量数据
边的长度
①测得水平距离的长为15米.
②根据手中剩余线的长度计算出风筝线的长为17米.
③小明牵线放风筝的手到地面的距离为1.7米.
数学九年级上册6 应用一元二次方程精品课时练习: 这是一份数学九年级上册<a href="/sx/tb_c99899_t7/?tag_id=28" target="_blank">6 应用一元二次方程精品课时练习</a>,文件包含第09讲应用一元二次方程2个知识点+2种题型+分层练习原卷版docx、第09讲应用一元二次方程2个知识点+2种题型+分层练习解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
初中数学北师大版(2024)九年级上册5 一元二次方程的根与系数的关系精品习题: 这是一份初中数学北师大版(2024)九年级上册<a href="/sx/tb_c99898_t7/?tag_id=28" target="_blank">5 一元二次方程的根与系数的关系精品习题</a>,文件包含第08讲一元二次方程的根与系数的关系2个知识点+2种题型+分层练习原卷版docx、第08讲一元二次方程的根与系数的关系2个知识点+2种题型+分层练习解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
北师大版(2024)九年级上册3 用公式法求解一元二次方程精品复习练习题: 这是一份北师大版(2024)九年级上册<a href="/sx/tb_c99896_t7/?tag_id=28" target="_blank">3 用公式法求解一元二次方程精品复习练习题</a>,文件包含第06讲用公式法求解一元二次方程2个知识点+2种题型+分层练习原卷版docx、第06讲用公式法求解一元二次方程2个知识点+2种题型+分层练习解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。