专题08 平面向量、概率、统计、计数原理-2024年高考数学二模试题分类汇编学案(原卷版+解析版)
展开
这是一份专题08 平面向量、概率、统计、计数原理-2024年高考数学二模试题分类汇编学案(原卷版+解析版),文件包含专题08平面向量概率统计计数原理原卷版docx、专题08平面向量概率统计计数原理解析版docx等2份学案配套教学资源,其中学案共144页, 欢迎下载使用。
平面向量
一、单选题
1.(2024·广东·二模)在平行四边形中,点满足,则( )
A.B.
C.D.
2.(2024·浙江绍兴·二模)已知四边形是平行四边形,,,记,,则( )
A.B.
C.D.
3.(2024·山东·二模)已知向量,则等于( ).
A.B.6C.D.18
4.(2024·湖北·二模)已知平面向量,,,则与的夹角为( )
A.B.C.D.
5.(2024·河北衡水·二模)若,,则实数( )
A.6B.C.3D.
6.(2024·安徽黄山·二模)已知,且,则在上的投影向量为( )
A.B.
C.D.
7.(2024·浙江台州·二模)已知平面向量,,若,则实数( )
A.-1B.-2C.1D.2
8.(2024·河北邯郸·二模)对任意两个非零的平面向量和,定义:,.若平面向量满足,且和都在集合中,则( )
A.1B.C.1或D.1或
9.(2024·广东梅州·二模)如图,两根绳子把物体M吊在水平杆子AB上.已知物体M的重力大小为20牛,且,在下列角度中,当角取哪个值时,绳承受的拉力最小.( )
A.B.C.D.
10.(2024·辽宁沈阳·二模)已知向量,则“”是“”的( )
A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
11.(2024·河北石家庄·二模)在平行四边形中,,则的取值范围是( )
A.B.
C.D.
12.(2024·江苏南通·二模)已知单位向量的夹角为,则( )
A.B.0C.1D.2
13.(2024·安徽芜湖·二模)已知等边的边长为2,点、分别为的中点,若,则=( )
A.1B.C.D.
14.(2024·全国·二模)如图,在中,分别为的中点,为上一点,且满足,则( )
A.B.1C.D.
15.(2024·湖南邵阳·二模)“四叶回旋镖”可看作是由四个相同的直角梯形围成的图形,如图所示,.点在线段与线段上运动,则的取值范围为( )
A.B.C.D.
16.(2024·湖南·二模)设,对满足条件的点的值与无关,则实数的取值范围为( )
A.B.
C.D.
17.(2024·安徽池州·二模)已知向量满足,则与的夹角为( )
A.B.C.D.
18.(2024·黑龙江·二模)已知,,在上的投影向量为,则向量与夹角余弦值为( )
A.B.C.D.
19.(2024·河南郑州·二模)在平面直角坐标系中,设,,动点P满足,则的最大值为( )
A.B.C.D.
20.(2024·广东佛山·二模)已知与为两个不共线的单位向量,则( )
A.B.
C.若,则D.若,则
二、多选题
21.(2024·江苏南通·二模)已知向量在向量方向上的投影向量为,向量,且与夹角,则向量可以为( )
A.B.C.D.
22.(2024·浙江宁波·二模)若平面向量满足且,则( )
A.的最小值为2
B.的最大值为5
C.的最小值为2
D.的最大值为
23.(2024·山东聊城·二模)已知向量,若在上的投影向量为,则( )
A.B.
C.D.与的夹角为
24.(2024·吉林·二模)已知平面向量,,,,,,且,则( )
A.与的夹角为
B.的最大值为5
C.的最小值为2
D.若,则的取值范围
三、填空题
25.(2024·江苏苏州·二模)设A,B,C,D为平面内四点,已知,,与的夹角为,M为AB的中点,,则的最大值为 .
26.(2024·广东韶关·二模)已知平面向量均为单位向量,且,则向量与的夹角为 ,的最小值为 .
27.(2024·浙江·二模)已知复数与在复平面内用向量和表示(其中是虚数单位,为坐标原点),则与夹角为 .
28.(2024·浙江嘉兴·二模)已知平面向量是非零向量,且与的夹角相等,则的坐标可以为 .(只需写出一个符合要求的答案)
29.(2024·广东湛江·二模)若向量,,//,则 , .
30.(2024·辽宁·二模)如图,在矩形中,,点分别在线段上,且,则的最小值为 .
31.(2024·浙江·二模)设正n边形的边长为1,顶点依次为,若存在点P满足,且,则n的最大值为 .(参考数据:)
32.(2024·黑龙江哈尔滨·二模)已知不共线的三个单位向量满足与的夹角为,则实数 .
33.(2024·浙江温州·二模)平面向量满足,,,则 .
34.(2024·福建莆田·二模)已知,则 ,在上的投影向量的坐标为 .
统计
一、单选题
1.(2024·湖南·二模)某10人的射击小组,在一次射击训练中射击成绩数据如下表,则这组数据的中位数为( )
A.2B.8C.8.2D.8.5
2.(2024·辽宁·二模)已知一组数据为50,40,39,45,32,34,42,37,则这组数据第40百分位数为( )
A.39B.40C.45D.32
3.(2024·山东·二模)某校高三共有200人参加体育测试,根据规则,82分以上的考生成绩等级为,则估计获得的考生人数约为( )
A.100B.75C.50D.25
4.(2024·广东梅州·二模)根据一组样本数据,,,,求得经验回归方程为,且平均数.现发现这组样本数据中有两个样本点和误差较大,去除后,重新求得的经验回归方程为,则( )
A.0.5B.0.6C.0.7D.0.8
5.(2024·黑龙江齐齐哈尔·二模)样本数据16,20,21,24,22,14,18,28的分位数为( )
A.16B.17C.23D.24
6.(2024·广东韶关·二模)已知一组数据:12,16,22,24,25,31,33,35,45,若去掉12和45,将剩下的数据与原数据相比,则( )
A.极差不变B.平均数不变C.方差不变D.上四分位数不变
7.(2024·江苏南通·二模)某同学在一次数学测试中的成绩是班级第三名(假设测试成绩两两不同),成绩处于第90百分位数,则该班级的人数可能为( )
A.15B.25C.30D.35
8.(2024·河南新乡·二模)已知甲、乙两名篮球运动员在四场小组赛中的得分(单位:分)如下表:
则对于这两组数据,不相同的数字特征是( )
A.平均数B.中位数C.方差D.极差
9.(2024·浙江·二模)为了解某中学学生假期中每天自主学习的时间,采用样本量比例分配的分层随机抽样,现抽取高一学生40人,其每天学习时间均值为8小时,方差为0.5,抽取高二学生60人,其每天学习时间均值为9小时,方差为0.8,抽取高三学生100人,其每天学习时间均值为10小时,方差为1,则估计该校学生每天学习时间的方差为( )
A.1.4B.1.45C.1.5D.1.55
10.(2024·浙江宁波·二模)某校数学建模兴趣小组为研究本地区儿子身高与父亲身高之间的关系,抽样调查后得出与线性相关,且经验回归方程为.调查所得的部分样本数据如下:
则下列说法正确的是( )
A.儿子身高是关于父亲身高的函数
B.当父亲身高增加时,儿子身高增加
C.儿子身高为时,父亲身高一定为
D.父亲身高为时,儿子身高的均值为
11.(2024·山东·二模)甲乙两名歌手参加选拔赛,5位评委评分情况如下:甲:;乙:,记甲、乙两人的平均得分分别为,则下列判断正确的是( )
A.,甲比乙成绩稳定B.,乙比甲成绩稳定
C.,甲比乙成绩稳定D.,乙比甲成绩稳定
12.(2024·湖南长沙·二模)已知样本数据的平均数和标准差均为4,则数据的平均数与方差分别为( )
A.B.C.D.
13.(2024·湖南邵阳·二模)一组数据:的第30百分位数为( )
A.30B.31C.25D.20
14.(2024·吉林白山·二模)将一组数据按照从小到大的顺序排列如下:,若该组数据的分位数为19,则( )
A.19B.20C.21D.22
二、多选题
15.(2024·广东·二模)若是样本数据的平均数,则( )
A.的极差等于的极差
B.的平均数等于的平均数
C.的中位数等于的中位数
D.的标准差大于的标准差
16.(2024·浙江绍兴·二模)国家统计局统计了2024年1月全国多个大中城市二手住宅销售价格的分类指数,其中北方和南方各4个城市的90m²及以下二手住宅销售价格的环比数据如下:
则( )
A.4个北方城市的环比数据的极差小于4个南方城市的环比数据的极差
B.4个北方城市的环比数据的均值小于4个南方城市的环比数据的均值
C.4个北方城市的环比数据的方差大于4个南方城市的环比数据的方差
D.4个北方城市的环比数据的中位数大于4个南方城市的环比数据的中位数
17.(2024·全国·二模)人均可支配收入和人均消费支出是两个非常重要的经济和民生指标,常被用于衡量一个地区经济发展水平和群众生活水平.下图为2018~2023年前三季度全国城镇居民人均可支配收入及人均消费支出统计图,据此进行分析,则( )
A.2018~2023年前三季度全国城镇居民人均可支配收入逐年递增
B.2018~2023年前三季度全国城镇居民人均消费支出逐年递增
C.2018~2023年前三季度全国城镇居民人均可支配收入的极差比人均消费支出的极差大
D.2018~2023年前三季度全国城镇居民人均消费支出的中位数为21180元
18.(2024·广东湛江·二模)广东省湛江市2017年到2022年常住人口变化图如图所示,则( )
A.湛江市2017年到2022年这6年的常住人口的极差约为38万
B.湛江市2017年到2022年这6年的常住人口呈递增趋势
C.湛江市2017年到2022年这6年的常住人口的第60百分位数为730.50万
D.湛江市2017年到2022年这6年的常住人口的中位数为717.02万
19.(2024·浙江嘉兴·二模)已知一组数据,其中位数为,平均数为,极差为,方差为.现从中删去某一个数,得到一组新数据,其中位数为,平均数为,极差为,方差为,则下列说法中正确的是( )
A.若删去3,则
B.若删去9,则
C.无论删去哪个数,均有
D.若,则
20.(2024·浙江台州·二模)某同学最近6次考试的数学成绩为107,114,136,128,122,143.则( )
A.成绩的第60百分位数为122B.成绩的极差为36
C.成绩的平均数为125D.若增加一个成绩125,则成绩的方差变小
21.(2024·河南开封·二模)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中正确的是( )
A.该地农户家庭年收入的极差为12
B.估计该地农户家庭年收入的75%分位数约为9
C.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
D.估计该地农户家庭年收入的平均值超过6.5万元
22.(2024·安徽池州·二模)在去年某校高二年级“校长杯”足球比赛中,甲乙两班每场比赛平均进球数、失球数及所有场次比赛进球个数、失球个数的标准差如下表:
下列说法正确的是( )
A.甲班在防守中比乙班稳定
B.乙班总体实力优于甲班
C.乙班很少不失球
D.乙班在进攻中有时表现很好有时表现较差
三、填空题
23.(2024·广东深圳·二模)已知样本,,的平均数为2,方差为1,则,,的平均数为 .
24.(2024·安徽·二模)一组样本10,16,20,12,35,14,30,24,40,43的第80百分位数是 .
25.(2024·安徽芜湖·二模)从某工厂生产的零件中随机抽取11个,其尺寸值为43,45,45,45,49,50,50,51,51,53,57(单位:mm),现从这11个零件中任取3个,则3个零件的尺寸刚好为这11个零件尺寸的平均数、第六十百分位数、众数的概率为 .
26.(2024·河南新乡·二模)若一组数据,,,,的平均数为3,方差为,则,,,,,9这6个数的平均数为 ,方差为 .
计数原理
一、单选题
1.(2024·湖南·二模)2024年春节期间,某单位需要安排甲、乙、丙等五人值班,每天安排1人值班,其中正月初一、二值班的人员只安排一天,正月初三到初八值班人员安排两天,其中甲因有其他事务,若安排两天则两天不能连排,其他人员可以任意安排,则不同排法一共有( )
A.792种B.1440种C.1728种D.1800种
2.(2024·浙江杭州·二模)将5名志愿者分配到三个社区协助开展活动,每个志愿者去一个社区,每个社区至少1名志愿者,则不同的分配方法数是( )
A.300B.240C.150D.50
3.(2024·广东深圳·二模)已知某六名同学在CMO竞赛中获得前六名(无并列情况),其中甲或乙是第一名,丙不是前三名,则这六名同学获得的名次情况可能有( )
A.72种B.96种C.144种D.288种
4.(2024·广东佛山·二模)劳动可以树德、可以增智、可以健体、可以育美.甲、乙、丙、丁、戊共5名同学进行劳动实践比赛,已知冠军是甲、乙当中的一人,丁和戊都不是最差的,则这5名同学的名次排列(无并列名次)共有( )
A.12种B.24种C.36种D.48种
5.(2024·辽宁·二模)甲、乙、丙、丁4人参加活动,4人坐在一排有12个空位的座位上,根据要求,任意两人之间需间隔至少两个空位,则不同的就座方法共有( )
A.120种B.240种C.360种D.480种
6.(2024·山东聊城·二模)班主任从甲、乙、丙三位同学中安排四门不同学科的课代表,要求每门学科有且只有一位课代表,每位同学至多担任两门学科的课代表,则不同的安排方案共有( )
A.60种B.54种C.48种D.36种
7.(2024·黑龙江哈尔滨·二模)2024年3月19日,新加坡共和理工学院代表团一行3位嘉宾莅临我校,就拓宽大学与中学间的合作、深化国际人才培养等议题与我校进行了深入的交流.交流时嘉宾席位共有一排8个空座供3位嘉宾就坐,若要求每位嘉宾的两旁都有空座,且嘉宾甲必须坐在3位嘉宾中间,则不同的坐法有( )
A.8种B.12种C.16种D.24种
8.(2024·河北邯郸·二模)某班联欢会原定5个节目,已排成节目单,开演前又增加了2个节目,现将这2个新节目插入节目单中,要求新节目既不排在第一位,也不排在最后一位,那么不同的插法种数为( )
A.12B.18C.20D.60.
9.(2024·浙江·二模)展开式的常数项为( )
A.B.C.D.
10.(2024·浙江嘉兴·二模)6位学生在游乐场游玩三个项目,每个人都只游玩一个项目,每个项目都有人游玩,若项目必须有偶数人游玩,则不同的游玩方式有( )
A.180种B.210种C.240种D.360种
11.(2024·广东湛江·二模)已知,则( )
A.B.C.15D.17
12.(2024·浙江台州·二模)房屋建造时经常需要把长方体砖头进行不同角度的切割,以契合实际需要.已知长方体的规格为,现从长方体的某一棱的中点处作垂直于该棱的截面,截取1次后共可以得到,,三种不同规格的长方体.按照上述方式对第1次所截得的长方体进行第2次截取,再对第2次所截得的长方体进行第3次截取,则共可得到体积为165cm³的不同规格长方体的个数为( )
A.8B.10C.12D.16
13.(2024·湖北·二模)把4个相同的红球,4个相同的白球,全部放入4个不同的盒子中,每个盒子放2个球,则不同的放法种数有( )
A.12B.18C.19D.24
14.(2024·江苏南通·二模)若,则等于( )
A.49B.55C.120D.165
15.(2024·安徽·二模)已知的展开式二项式系数和为256,则展开式中系数最大的项为( )
A.第5项B.第6项C.第7项D.第8项
16.(2024·河南新乡·二模)从这5个数字中任取2个偶数和1个奇数,组成一个三位数,则不同的三位数的个数为( )
A.16B.24C.28D.36
17.(2024·湖南·二模)某银行在2024年初给出的大额存款的年利率为,某人存入大额存款元,按照复利计算10年后得到的本利和为,下列各数中与最接近的是( )
A.1.31B.1.32C.1.33D.1.34
二、多选题
18.(2024·湖北·二模)如果,k,m,,则当k取下列何值时,存在m,使得成立( )
A.9B.40C.121D.7381
19.(2024·云南贵州·二模)的展开式中,下列结论正确的是( )
A.展开式共7项B.项系数为280
C.所有项的系数之和为2187D.所有项的二项式系数之和为128
三、填空题
20.(2024·安徽合肥·二模)在的展开式中,的系数为 .
21.(2024·浙江绍兴·二模)的展开式中的系数是 .(用数字作答)
22.(2024·广东韶关·二模)二项式的展开式中,项的系数是常数项的倍,则 .
23.(2024·广西·二模)智慧农机是指配备先进的信息技术,传感器、自动化和机器学习等技术,对农业机械进行数字化和智能化改造的农业装备,例如:自动育秧机和自动插秧机.正值春耕备耕时节,某智慧农场计划新购2台自动育秧机和3台自动插秧机,现有6台不同的自动育秧机和5台不同的自动插秧机可供选择,则共有 种不同的选择方案.
24.(2024·黑龙江吉林·二模)设,则 .
25.(2024·江西九江·二模)为助力乡村振兴,九江市教科所计划选派5名党员教师前往5个乡村开展“五育”支教进乡村党建活动,每个乡村有且只有1人,则甲不派往乡村A的选派方法有 种.
26.(2024·河北石家庄·二模)各位数字之和为的三位正整数的个数为 .
27.(2024·广东·二模)的展开式中的系数为 (用数字作答).
28.(2024·浙江台州·二模)的展开式中的系数为 (用数字作答).
29.(2024·山东·二模)已知二项式的展开式中第4项与第8项的二项式系数相等, .
概率
一、单选题
1.(2024·广东梅州·二模)某学校为参加辩论比赛,选出8名学生,其中3名男生和5名女生,为了更好备赛和作进一步选拔,现将这8名学生随机地平均分成两队进行试赛,那么两队中均有男生的概率是( )
A.B.C.D.
2.(2024·山东·二模)三位男同学和两位女同学随机站成一列,则两位女同学相邻的概率是( )
A.B.C.D.
3.(2024·黑龙江·二模)某校组织知识竞赛,已知甲同学答对第一题的概率为,从第二题开始,若甲同学前一题答错,则此题答对的概率为;若前一题答对,则此题答对的概率为.记甲同学回答第题时答错的概率为,当时,恒成立,则的最小值为( )
A.B.C.D.
4.(2024·福建莆田·二模)若,则( )
A.事件与互斥B.事件与相互独立
C.D.
5.(2024·湖北武汉·二模)设,为任意两个事件,且,,则下列选项必成立的是( )
A.B.
C.D.
6.(2023·山东潍坊·二模)已知事件A、B满足,,则( )
A.B.
C.事件相互独立D.事件互斥
二、多选题
7.(2024·广东佛山·二模)在一个有限样本空间中,假设,且A与B相互独立,A与C互斥,则( )
A.B.
C.D.若,则B与C互斥
8.(2024·湖北·二模)甲袋中有20个红球.10个白球,乙袋中红球、白球各有10个,两袋中的球除了颜色有差别外,再没有其他差别.现在从两袋中各换出1个球,下列结论正确的是( )
A.2个球都是红球的概率为
B.2个球中恰有1个红球的概率为
C.不都是红球的概率为
D.都不是红球的概率为
9.(2024·黑龙江·二模)若,,则下列说法正确的是( )
A.B.事件与相互独立
C.D.
10.(2024·湖北·二模)已知为随机事件,,则下列结论正确的有( )
A.若为互斥事件,则
B.若为互斥事件,则
C.若相互独立,则
D.若若,则
三、填空题
11.(2024·安徽芜湖·二模)从某工厂生产的零件中随机抽取11个,其尺寸值为43,45,45,45,49,50,50,51,51,53,57(单位:mm),现从这11个零件中任取3个,则3个零件的尺寸刚好为这11个零件尺寸的平均数、第六十百分位数、众数的概率为 .
统计案例
一、单选题
1.(2024·辽宁鞍山·二模)校数学兴趣社团对“学生性别和选学生物学是否有关”作了尝试性调查.其中被调查的男女生人数相同.男生选学生物学的人数占男生人数的,女生选学生物学的人数占女生人数.若有的把握认为选学生物学和性别有关,则调查人数中男生不可能有( )人.
附表:
其中,.
A.20B.30C.35D.40
2.(2024·黑龙江哈尔滨·二模)针对2025年第九届亚冬会在哈尔滨举办,校团委对“是否喜欢冰雪运动与学生性别的关系”进行了一次调查,其中被调查的男、女生人数相同,男生中喜欢冰雪运动的人数占男生人数的,女生中喜欢冰雪运动的人数占女生人数的,若依据的独立性检验,认为是否喜欢冰雪运动与学生性别有关,则被调查的学生中男生的人数不可能是( )
附:.
A.48B.54C.60D.66
3.(2024·湖南·二模)对两个变量和进行回归分析,得到一组样本数据,下列统计量的数值能够刻画其经验回归方程的拟合效果的是( )
A.平均数B.相关系数C.决定系数D.方差
4.(2024·广东广州·二模)根据分类变量与的成对样本数据,计算得到.依据的独立性检验,结论为( )
A.变量与独立
B.变量与独立,这个结论犯错误的概率不超过
C.变量与不独立
D.变量与不独立,这个结论犯错误的概率不超过
5.(2023·福建宁德·二模)5G技术在我国已经进入高速发展的阶段,5G手机的销量也逐渐上升,某手机商城统计了最近5个月手机的实际销量,如下表所示:
若y与x线性相关,且线性回归方程为,则下列说法不正确的是( )
A.由题中数据可知,变量y与x正相关
B.线性回归方程中
C.可以预测时该商场5G手机销量约为1.72(千只)
D.时,残差为
二、多选题
6.(2024·江西南昌·二模)为了解中学生喜爱足球运动与性别是否有关,甲、乙两校的课题组分别随机抽取了本校部分学生进行调查,得到如下两个表格:
甲校样本
乙校样本
(参考公式及数据:).
则下列判断中正确的是( )
A.样本中,甲校男学生喜爱足球运动的比例高于乙校男学生喜爱足球运动的比例
B.样本中,甲校女学生喜爱足球运动的比例高于乙校女学生喜爱足球运动的比例
C.根据甲校样本有的把握认为中学生喜爱足球运动与性别有关
D.根据乙校样本有的把握认为中学生喜爱足球运动与性别有关
7.(2024·江苏南通·二模)某农科所针对耕种深度(单位:cm)与水稻每公顷产量(单位:t)的关系进行研究,所得部分数据如下表:
已知,用最小二乘法求出关于的经验回归方程:,,,数据在样本,的残差分别为,.
(参考数据:两个变量,之间的相关系数为,参考公式:,,)则( )
A.B.
C.D.
8.(2024·安徽芜湖·二模)已知由样本数据(i=1,2,3,…,10)组成的一个样本,得到回归直线方程为,且.剔除一个偏离直线较大的异常点后,得到新的回归直线经过点.则下列说法正确的是
A.相关变量x,y具有正相关关系
B.剔除该异常点后,样本相关系数的绝对值变大
C.剔除该异常点后的回归直线方程经过点
D.剔除该异常点后,随x值增加相关变量y值减小速度变小
9.(2023·浙江绍兴·二模)某学校一同学研究温差与本校当天新增感冒人数人的关系,该同学记录了天的数据:
经过拟合,发现基本符合经验回归方程,则( )
A.样本中心点为
B.
C.时,残差为
D.若去掉样本点,则样本的相关系数增大
10.(2023·湖南长沙·二模)下列说法中,正确的命题有( )
A.在做回归分析时,残差图中残差点分布的带状区域的宽度越窄表示回归效果越好
B.已知随机变量服从正态分布N(2,),,则
C.以模型去拟合一组数据时,为了求出回归方程,设,求得线性回归方程为,则c,k的值分别是和0.3
D.若样本数据,,…的方差为2,则数据,,…的方差为16
11.(2023·山东青岛·二模)“天宫课堂”是为发挥中国空间站的综合效益,推出的首个太空科普教育品牌.为了解学生对“天宫课堂”的喜爱程度,某学校从全校学生中随机抽取200名学生进行问卷调查,得到以下数据,则( )
参考公式及数据:①,.②当时,.
A.从这200名学生中任选1人,已知选到的是男生,则他喜欢天宫课堂的概率为
B.用样本的频率估计概率,从全校学生中任选3人,恰有2人不喜欢天宫课堂的概率为
C.根据小概率值的独立性检验,认为喜欢天宫课堂与性别没有关联
D.对抽取的喜欢天宫课堂的学生进行天文知识测试,男生的平均成绩为80,女生的平均成绩为90,则参加测试的学生成绩的均值为85
12.(2021·湖北武汉·二模)在对具有相关关系的两个变量进行回归分析时,若两个变量不呈线性相关关系,可以建立含两个待定参数的非线性模型,并引入中间变量将其转化为线性关系,再利用最小二乘法进行线性回归分析.下列选项为四个同学根据自己所得数据的散点图建立的非线性模型,且散点图的样本点均位于第一象限,则其中可以根据上述方法进行回归分析的模型有( )
A.B.
C.D.
三、解答题
13.(2024·浙江台州·二模)台州是全国三大电动车生产基地之一,拥有完整的产业链和突出的设计优势.某电动车公司为了抢占更多的市场份额,计划加大广告投入、该公司近5年的年广告费(单位:百万元)和年销售量(单位:百万辆)关系如图所示:令,数据经过初步处理得:
现有①和②两种方案作为年销售量y关于年广告费x的回归分析模型,其中a,b,m,n均为常数.
(1)请从相关系数的角度,分析哪一个模型拟合程度更好?
(2)根据(1)的分析选取拟合程度更好的回归分析模型及表中数据,求出y关于x的回归方程,并预测年广告费为6(百万元)时,产品的年销售量是多少?
(3)该公司生产的电动车毛利润为每辆200元(不含广告费、研发经费).该公司在加大广告投入的同时也加大研发经费的投入,年研发经费为年广告费的199倍.电动车的年净利润受年广告费和年研发经费影响外还受随机变量影响,设随机变量服从正态分布,且满足.在(2)的条件下,求该公司年净利润的最大值大于1000(百万元)的概率.(年净利润=毛利润×年销售量-年广告费-年研发经费-随机变量).
附:①相关系数,
回归直线中公式分别为,;
②参考数据:,,,.
14.(2024·河北石家庄·二模)某校举办乒乓球与羽毛球比赛,要求每个学生只能报名参加其中一项.从报名参加比赛的学生中随机选取男生、女生各75人进行调查,得到如下列联表:
(1)根据表中数据,依据小概率值的独立性检验,分析该校学生选择乒乓球还是羽毛球是否与性别有关联.
(2)从调查的女生中,按组别采用比例分配的分层随机抽样的方法抽取15人.若从这15人中随机抽2人,记为抽到乒乓球组的学生人数,求的分布列及数学期望.
附:
15.(2024·江苏南通·二模)甲公司推出一种新产品,为了解某地区消费者对新产品的满意度,从中随机调查了1000名消费者,得到下表:
(1)能否有的把握认为消费者对新产品的满意度与性别有关;
(2)若用频率估计概率,从该地区消费者中随机选取3人,用X表示不满意的人数,求X的分布列与数学期望.
附:,.
16.(2024·黑龙江·二模)某兴趣小组,对高三刚结束的测试的物理成绩进行随机调查,在所有选择物理科的考生中随机抽取100名各类考生的物理成绩,整理数据如下表(单位:人)
(1)估计该校高三学习物理男生人数与女人数的比值;
(2)求A班物理平均成绩的估计值(同一组中的数据用该组区间中点值为代表,结果四舍五入到整数);
(3)把成绩在称为及格,成绩在为不及格,根据所有数据完成下面列联表,试根据小概率值的独立性检验,分析该校考生的物理成绩与性别是否有关?
附:
随机变量及其分布列
一、单选题
1.(2024·全国·二模)某单位选派一支代表队参加市里的辩论比赛,现有“初心”“使命”两支预备队.选哪支队是随机的,其中选“初心”队获胜的概率为0.8,选“使命”队获胜的概率为0.7,单位在比赛中获胜的条件下,选“使命”队参加比赛的概率为( )
A.B.C.D.
2.(2024·河北石家庄·二模)某市教育局为了解高三学生的学习情况,组织了一次摸底考试,共有50000名考生参加这次考试,数学成绩近似服从正态分布,其正态密度函数为且,则该市这次考试数学成绩超过110分的考生人数约为( )
A.2000B.3000C.4000D.5000
3.(2024·广东广州·二模)设,随机变量取值的概率均为0.2,随机变量取值的概率也均为0.2,若记分别为的方差,则( )
A.
B.
C.
D.与的大小关系与的取值有关
二、多选题
4.(2024·广东佛山·二模)在一个有限样本空间中,假设,且A与B相互独立,A与C互斥,则( )
A.B.
C.D.若,则B与C互斥
5.(2024·湖北·二模)甲袋中有20个红球.10个白球,乙袋中红球、白球各有10个,两袋中的球除了颜色有差别外,再没有其他差别.现在从两袋中各换出1个球,下列结论正确的是( )
A.2个球都是红球的概率为
B.2个球中恰有1个红球的概率为
C.不都是红球的概率为
D.都不是红球的概率为
6.(2024·黑龙江·二模)若,,则下列说法正确的是( )
A.B.事件与相互独立
C.D.
7.(2024·新疆·二模)坐式高拉训练器可以锻炼背阔肌,斜方肌下束.小明是一个健身爱好者,他发现健身房内的坐式高拉训练器锻炼人群的配重(单位:)符合正态分布,下列说法正确的是( )
参考数据:,
A.配重的平均数为
B.
C.
D.1000个使用该器材的人中,配重超过的有135人
8.(2024·云南贵州·二模)袋子中有2个黑球,1个白球,现从袋子中有放回地随机取球4次,每次取一个球,取到白球记0分,黑球记1分,记4次取球的总分数为,则( )
A.B.
C.的期望D.的方差
9.(2024·江苏南通·二模)已知,.若随机事件A,B相互独立,则( )
A.B.C.D.
三、填空题
10.(2024·广东佛山·二模)统计学中通常认为服从于正态分布的随机变量X只取中的值,简称为原则.假设某厂有一条包装食盐的生产线,正常情况下食盐质量服从正态分布(单位:g),某天生产线上的检测员随机抽取了一包食盐,称得其质量大于415g,他立即判断生产线出现了异常,要求停产检修.由此可以得出,的最大值是 .
11.(2024·辽宁·二模)已知在伯努利试验中,事件A发生的概率为,我们称将试验进行至事件A发生r次为止,试验进行的次数X服从负二项分布,记.若,则 .
12.(2024·山东聊城·二模)甲、乙两选手进行围棋比赛,如果每局比赛甲获胜的概率为,乙获胜的概率为,采用三局两胜制,则在甲最终获胜的情况下,比赛进行了两局的概率为 .
13.(2024·广东梅州·二模)某中学1500名同学参加一分钟跳绳测试,经统计,成绩X近似服从正态分布,已知成绩大于170次的有300人,则可估计该校一分钟跳绳成绩X在130~150次之间的人数约为 .
14.(2024·浙江台州·二模)某班有A,B两个学习小组,其中A组有2位男生,1位女生,B组有2位男生,2位女生.为了促进小组之间的交流,需要从A,B两组中随机各选一位同学交换,则交换后A组中男生人数的数学期望为 .
15.(2024·河南开封·二模)袋中有个红球,个黄球,个绿球.现从中任取两个球,记取出的红球数为,若取出的两个球都是红球的概率为,则 .
四、解答题
16.(2024·辽宁·二模)小明从4双鞋中,随机一次取出2只,
(1)求取出的2只鞋都不来自同一双的概率;
(2)若这4双鞋中,恰有一双是小明的,记取出的2只鞋中含有小明的鞋的个数为X,求X的分布列及数学期望,
17.(2024·浙江·二模)甲、乙两人进行知识问答比赛,共有道抢答题,甲、乙抢题的成功率相同.假设每题甲乙答题正确的概率分别为和,各题答题相互独立.规则为:初始双方均为0分,答对一题得1分,答错一题得﹣1分,未抢到题得0分,最后累计总分多的人获胜.
(1)若,,求甲获胜的概率;
(2)若,设甲第题的得分为随机变量,一次比赛中得到的一组观测值,如下表.现利用统计方法来估计的值:
①设随机变量,若以观测值的均值作为的数学期望,请以此求出的估计值;
②设随机变量取到观测值的概率为,即;在一次抽样中获得这一组特殊观测值的概率应该最大,随着的变化,用使得达到最大时的取值作为参数的一个估计值.求.
表1:甲得分的一组观测值.
附:若随机变量,的期望,都存在,则.
18.(2024·广东深圳·二模)某大型企业准备把某一型号的零件交给甲工厂或乙工厂生产.经过调研和试生产,质检人员抽样发现:甲工厂试生产的一批零件的合格品率为94%;乙工厂试生产的另一批零件的合格品率为98%;若将这两批零件混合放在一起,则合格品率为97%.
(1)从混合放在一起的零件中随机抽取3个,用频率估计概率,记这3个零件中来自甲工厂的个数为X,求X的分布列和数学期望;
(2)为了争取获得该零件的生产订单,甲工厂提高了生产该零件的质量指标.已知在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率.设事件“甲工厂提高了生产该零件的质量指标”,事件“该大型企业把零件交给甲工厂生产”、已知,证明: .
19.(2024·广东佛山·二模)如图,在一条无限长的轨道上,一个质点在随机外力的作用下,从位置0出发,每次等可能地向左或向右移动一个单位,设移动n次后质点位于位置.
(1)求;
(2)求;
(3)指出质点最有可能位于哪个位置,并说明理由.
20.(2024·山东聊城·二模)随着互联网的普及、大数据的驱动,线上线下相结合的新零售时代已全面开启,新零售背景下,即时配送行业稳定快速增长.某即时配送公司为更好地了解客户需求,优化自身服务,提高客户满意度,在其两个分公司的客户中各随机抽取10位客户进行了满意度评分调查(满分100分),评分结果如下:
分公司A:66,80,72,79,80,78,87,86,91,91.
分公司B:62,77,82,70,73,86,85,94,92,89.
(1)求抽取的这20位客户评分的第一四分位数;
(2)规定评分在75分以下的为不满意,从上述不满意的客户中随机抽取3人继续沟通不满意的原因及改进建议,设被抽到的3人中分公司的客户人数为,求的分布列和数学期望.
21.(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.
(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;
(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为(如1122,则),求的分布列及数学期望.
22.(2024·广东韶关·二模)小明参加社区组织的射击比赛活动,已知小明射击一次、击中区域甲的概率是,击中区域乙的概率是,击中区域丙的概率是,区域甲,乙、丙均没有重复的部分.这次射击比赛获奖规则是:若击中区域甲则获一等奖;若击中区域乙则有一半的机会获得二等奖,有一半的机会获得三等奖;若击中区域丙则获得三等奖;若击中上述三个区域以外的区域则不获奖.获得一等奖和二等奖的选手被评为“优秀射击手”称号.
(1)求小明射击1次获得“优秀射击手”称号的概率;
(2)小明在比赛中射击4次,每次射击的结果相互独立,设获三等奖的次数为X,求X分布列和数学期望.
23.(2024·河北邯郸·二模)假设某同学每次投篮命中的概率均为.
(1)若该同学投篮4次,求恰好投中2次的概率.
(2)该同学参加投篮训练,训练计划如下:先投个球,若这个球都投进,则训练结束,否则额外再投个.试问为何值时,该同学投篮次数的期望值最大?
24.(2024·浙江台州·二模)台州是全国三大电动车生产基地之一,拥有完整的产业链和突出的设计优势.某电动车公司为了抢占更多的市场份额,计划加大广告投入、该公司近5年的年广告费(单位:百万元)和年销售量(单位:百万辆)关系如图所示:令,数据经过初步处理得:
现有①和②两种方案作为年销售量y关于年广告费x的回归分析模型,其中a,b,m,n均为常数.
(1)请从相关系数的角度,分析哪一个模型拟合程度更好?
(2)根据(1)的分析选取拟合程度更好的回归分析模型及表中数据,求出y关于x的回归方程,并预测年广告费为6(百万元)时,产品的年销售量是多少?
(3)该公司生产的电动车毛利润为每辆200元(不含广告费、研发经费).该公司在加大广告投入的同时也加大研发经费的投入,年研发经费为年广告费的199倍.电动车的年净利润受年广告费和年研发经费影响外还受随机变量影响,设随机变量服从正态分布,且满足.在(2)的条件下,求该公司年净利润的最大值大于1000(百万元)的概率.(年净利润=毛利润×年销售量-年广告费-年研发经费-随机变量).
附:①相关系数,
回归直线中公式分别为,;
②参考数据:,,,.
25.(2024·浙江丽水·二模)为保护森林公园中的珍稀动物,采用某型号红外相机监测器对指定区域进行监测识别.若该区域有珍稀动物活动,该型号监测器能正确识别的概率(即检出概率)为;若该区域没有珍稀动物活动,但监测器认为有珍稀动物活动的概率(即虚警概率)为.已知该指定区域有珍稀动物活动的概率为0.2.现用2台该型号的监测器组成监测系统,每台监测器(功能一致)进行独立监测识别,若任意一台监测器识别到珍稀动物活动,则该监测系统就判定指定区域有珍稀动物活动.
(1)若.
(i)在该区域有珍稀动物活动的条件下,求该监测系统判定指定区域有珍稀动物活动的概率;
(ii)在判定指定区域有珍稀动物活动的条件下,求指定区域实际没有珍稀动物活动的概率(精确到0.001);
(2)若监测系统在监测识别中,当时,恒满足以下两个条件:①若判定有珍稀动物活动时,该区域确有珍稀动物活动的概率至少为0.9;②若判定没有珍稀动物活动时,该区域确实没有珍稀动物活动的概率至少为0.9.求的范围(精确到0.001).
(参考数据:)
26.(2024·河南新乡·二模)某公司计划在员工团建活动中设置一个抽奖环节.工作人员在仓库中随机抽取了20个规格相同的礼盒,各礼盒中均有1个质地相同的小球,礼盒和小球的颜色为红色或黑色,且颜色分布如下表所示.
已知从上述礼盒中随机选取2个礼盒,红色与黑色礼盒恰好各1个的概率为.
(1)求的值.
(2)为提高活动的趣味性,设抽奖过程及中奖规则如下:
①将20个礼盒放在1个箱子中,每人有放回地分两次抽取,每次抽取1个礼盒,并记录礼盒和该礼盒中的小球的颜色.
②两次抽取后的结果分四种情况:礼盒与礼盒中的小球的颜色两次均相同;2个礼盒的颜色相同,但2个小球的颜色不同;2个礼盒的颜色不同,但2个小球的颜色相同;礼盒与礼盒中的小球的颜色两次均不相同.
③按②抽取后的结果的可能性大小,设概率越小,对应奖项的奖金越高.
④活动奖励分四个等级,奖金额分别为一等奖800元,二等奖400元,三等奖200元,四等奖100元.
若预计有60名员工参与抽奖活动(每人抽奖1次),求抽奖活动的奖金总额的数学期望.
27.(2024·广东·二模)如图,在平面直角坐标系中有一个点阵,点阵中所有点的集合为,从集合中任取两个不同的点,用随机变量表示它们之间的距离.
(1)当时,求的分布列.
(2)对给定的正整数.
(i)求随机变量的所有可能取值的个数;(用含有的式子表示)
(ii)求概率.(用含有的式子表示)
28.(2024·山东·二模)甲同学参加学校的答题闯关游戏,游戏共分为两轮,第一轮为初试,共有5道题,已知这5道题中甲同学只能答对其中3道,从这5道题目中随机抽取3道题供参赛者作答,答对其中两题及以上即视为通过初试;第二轮为复试,共有2道题目,甲同学答对其中每道题的概率均为,两轮中每道题目答对得6分,答错得0分,两轮总分不低于24分即可晋级决赛.
(1)求甲通过初试的概率;
(2)求甲晋级决赛的概率,并在甲晋级决赛的情况下,记随机变量为甲的得分成绩,求的数学期望.
29.(2024·浙江嘉兴·二模)春季流感对广大民众的健康生活带来一定的影响,为了有效预防流感,很多民众注射了流感疫苗.某市防疫部门从辖区居民中随机抽取了1000人进行调查,发现其中注射疫苗的800人中有220人感染流感,另外没注射疫苗的200人中有80人感染流感.医学研究表明,流感的检测结果是有错检的可能,已知患有流感的人其检测结果有呈阳性(感染),而没有患流感的人其检测结果有呈阴性(未感染).
(1)估计该市流感感染率是多少?
(2)根据所给数据,判断是否有的把握认为注射流感疫苗与预防流感有关;
(3)已知某人的流感检测结果呈阳性,求此人真的患有流感的概率.(精确到0.001)
附:,
30.(2024·浙江宁波·二模)三个人利用手机软件依次进行拼手气抢红包活动,红包的总金额数为个单位.第一个人抢到的金额数为1到个单位且等可能(记第一个人抢完后剩余的金额数为),第二个人在剩余的个金额数中抢到1到个单位且等可能,第三个人抢到剩余的所有金额数,并且每个人抢到的金额数均为整数个单位.三个人都抢完后,获得金额数最高的人称为手气王(若有多人金额数相同且最高,则先抢到最高金额数的人称为手气王).
(1)若,则第一个人抢到的金额数可能为个单位且等可能.
(i)求第一个人抢到金额数的分布列与期望;
(ii)求第一个人获得手气王的概率;
(2)在三个人抢到的金额数为的一个排列的条件下,求第一个人获得手气王的概率.
31.(2024·浙江杭州·二模)在概率统计中,常常用频率估计概率.已知袋中有若干个红球和白球,有放回地随机摸球次,红球出现次.假设每次摸出红球的概率为,根据频率估计概率的思想,则每次摸出红球的概率的估计值为.
(1)若袋中这两种颜色球的个数之比为,不知道哪种颜色的球多.有放回地随机摸取3个球,设摸出的球为红球的次数为,则.
注:表示当每次摸出红球的概率为时,摸出红球次数为的概率)
(ⅰ)完成下表;
(ⅱ)在统计理论中,把使得的取值达到最大时的,作为的估计值,记为,请写出的值.
(2)把(1)中“使得的取值达到最大时的作为的估计值”的思想称为最大似然原理.基于最大似然原理的最大似然参数估计方法称为最大似然估计.
具体步骤:先对参数构建对数似然函数,再对其关于参数求导,得到似然方程,最后求解参数的估计值.已知的参数的对数似然函数为,其中.求参数的估计值,并且说明频率估计概率的合理性.
32.(2024·河北石家庄·二模)某校举办乒乓球与羽毛球比赛,要求每个学生只能报名参加其中一项.从报名参加比赛的学生中随机选取男生、女生各75人进行调查,得到如下列联表:
(1)根据表中数据,依据小概率值的独立性检验,分析该校学生选择乒乓球还是羽毛球是否与性别有关联.
(2)从调查的女生中,按组别采用比例分配的分层随机抽样的方法抽取15人.若从这15人中随机抽2人,记为抽到乒乓球组的学生人数,求的分布列及数学期望.
附:
33.(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.
(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?
(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?
成绩(单位:环)
6
7
8
9
10
人数
1
2
2
4
1
甲
6
12
9
13
乙
8
11
7
14
父亲身高
164
166
170
173
173
174
180
儿子身高
165
168
176
170
172
176
178
北方城市
环比(单位:%,上月=100)
南方城市
环比(单位:%,上月=100)
北京
99.5
上海
99.5
天津
99.6
南京
99.5
石家庄
99.6
南昌
99.6
沈阳
99.7
福州
99.8
进球个数平均数
失球个数平均数
进球个数标准差
失球个数标准差
甲班
2.3
1.5
0.5
1.1
乙班
1.4
2.1
1.2
0.4
0.100
0.050
0.010
0.005
0.001
2.706
3.841
6.635
7.879
10.828
0.1
0.05
0.01
0.005
0.001
2.706
3.841
6.635
7.879
10.828
时间x
1
2
3
4
5
销售量y(千只)
0.5
0.8
1.0
1.2
1.5
喜爱足球运动
不喜爱足球运动
合计
男性
15
5
20
女性
8
12
20
合计
23
17
40
喜爱足球运动
不喜爱足球运动
合计
男性
70
30
100
女性
45
55
100
合计
115
85
200
0.1
0.01
0.001
2.706
6.635
10.828
耕种深度/cm
8
10
12
14
16
18
每公顷产量/t
6
8
11
12
喜欢天宫课堂
不喜欢天宫课堂
男生
80
20
女生
70
30
44
4.8
10
40.3
1.612
19.5
8.06
性别
比赛项目
合计
乒乓球组
羽毛球组
男生
50
25
75
女生
35
40
75
合计
85
65
150
0.1
0.05
0.01
0.005
0.001
2.706
3.841
6.635
7.879
10.828
满意
不满意
男
440
60
女
460
40
0.1
0.05
0.01
k
2.706
3.841
6.635
A班男生
2
8
15
8
B班男生
3
10
20
4
A班女生
3
4
2
1
B班女生
10
6
4
0
性别
成绩
合计
及格
不及格
男生
女生
合计
0.05
0.01
0.001
3.841
6.635
10.828
题目
1
2
3
4
5
6
7
8
9
10
得分
1
0
0
﹣1
1
1
﹣1
0
0
0
题目
11
12
13
14
15
16
17
18
19
20
得分
﹣1
0
1
1
﹣1
0
0
0
1
0
44
4.8
10
40.3
1.612
19.5
8.06
小球颜色
礼盒颜色
合计
红色
黑色
红色
m
n
黑色
2
6
8
合计
20
0.1
0.05
0.01
0.005
0.001
2.706
3.841
6.635
7.879
10.828
0
1
2
3
性别
比赛项目
合计
乒乓球组
羽毛球组
男生
50
25
75
女生
35
40
75
合计
85
65
150
0.1
0.05
0.01
0.005
0.001
2.706
3.841
6.635
7.879
10.828
相关学案
这是一份专题06 数列-2024年高考数学二模试题分类汇编学案(原卷版+解析版),文件包含专题06数列原卷版docx、专题06数列解析版docx等2份学案配套教学资源,其中学案共90页, 欢迎下载使用。
这是一份专题04 立体几何-2024年高考数学二模试题分类汇编学案(原卷版+解析版),文件包含专题04立体几何原卷版docx、专题04立体几何解析版docx等2份学案配套教学资源,其中学案共117页, 欢迎下载使用。
这是一份专题03 函数与导数-2024年高考数学二模试题分类汇编学案(原卷版+解析版),文件包含专题03函数与导数原卷版docx、专题03函数与导数解析版docx等2份学案配套教学资源,其中学案共143页, 欢迎下载使用。