年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    苏科版八年级数学下册专题9.13中心对称图形——平行四边形全章十六类必考压轴题同步学案(学生版+解析)

    立即下载
    加入资料篮
    苏科版八年级数学下册专题9.13中心对称图形——平行四边形全章十六类必考压轴题同步学案(学生版+解析)第1页
    苏科版八年级数学下册专题9.13中心对称图形——平行四边形全章十六类必考压轴题同步学案(学生版+解析)第2页
    苏科版八年级数学下册专题9.13中心对称图形——平行四边形全章十六类必考压轴题同步学案(学生版+解析)第3页
    还剩237页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中苏科版(2024)9.3 平行四边形导学案

    展开

    这是一份初中苏科版(2024)9.3 平行四边形导学案,共240页。学案主要包含了模型建立,拓展应用,操作发现,类比探究,探究问题等内容,欢迎下载使用。
    必考点1
    平行四边形中边的关系运用
    1.(2022秋·浙江宁波·八年级校考期末)已知平行四边形ABCD,AD=8,∠BAD=135°,点E在边BC上,将平行四边形沿AE翻折,使点B落在边CD的F处,且满足CF−DF=32,则EF=______.
    2.(2022秋·黑龙江哈尔滨·九年级统考期中)如图,已知▱ABCD中,AF垂直平分DC,且AF=DC,点E为AF上一点,连接BE、CE,若∠CEF=2∠ABE,AE=2,则AD的长为______.
    3.(2022秋·陕西宝鸡·九年级统考期中)如图,在△ABC中,AB=BC=10,AC=12,D是BC边上任意一点,连接AD,以AD,CD为邻边作平行四边形ADCE,连接DE,则DE长的最小值为___________.
    4.(2022春·江西吉安·八年级统考期末)如图,在▱ABCD中,∠DS2,则S3>S1;③若S3=2S1,则S4=2S2;④如果P点在对角线BD上,则S1:S4=S2:S3;⑤S1−S2=S3−S4,则P点一定在对角线BD上.
    4.(2022秋·上海·七年级校考期末)小明在学习了中心对称图形以后,想知道平行四边形是否为中心对称图形.于是将一张平行四边形纸片平放在一张纸板上,在纸板上沿四边画出它的初始位置,并画出平行四边形纸片的对角线,用大头针钉住对角线的交点.将平行四边形纸片绕着对角线的交点旋转180°后,平行四边形纸片与初始位置的平行四边形恰好重合.通过上述操作,小明惊喜地发现平行四边形是中心对称图形,对角线的交点就是对称中心.请你利用小明所发现的平行四边形的这一特征完成下列问题:
    (1)如图①,四边形ABCD是平行四边形,对角线AC、BD相交于点O.过点O的直线l与边AB、CD分别相交于点M、N,四边形AMND的面积与平行四边形ABCD的面积之比为___________;
    (2)如图②,这个图形是由平行四边形ABCD与平行四边形ECGF组成的,点E在边CD上,且B、C、G在同一直线上.
    ①请画出一条直线把这个图形分成面积相等的两个部分(不要求写出画法,但请标注字母并写出结论);
    ②延长GF与边AD的延长线交于点K,延长FE与边AB交于点H.联结EB、EK、BK,如图③所示,当四边形AHED的面积为10,四边形CEFG的面积为2时,求三角形EBK的面积.
    5.(2022秋·吉林长春·八年级统考期末)定义:我们把三角形被一边中线分成的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.
    例如:如图1,在△ABC中,如果AD是AB边上的中线,那么△ACD和△ABD是“朋友三角形”,则有S△ACD=S△ABD.
    应用:如图2,在矩形ABCD中,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.
    (1)求证:△AOE和△AOB是“朋友三角形”.
    (2)如图3,在四边形ABCD中,∠ADC=90°,AD//BC,AD=DC=8,BC=12,点G在BC上,点E在AD上,DG与CE交于点F,GF=DF.
    ①求证:△DFE和△DFC是“朋友三角形”;
    ②连接AF,若△AEF和△DEF是“朋友三角形”,求四边形ABGF的面积.
    (3)在△ABC中,∠B=30°,AB=8,点D在线段AB上,连接CD,△ACD和△BCD是“朋友三角形”,将△ACD沿CD所在直线翻折,得到△A'CD,若△A'CD与△ABC重合部分的面积等于△ABC面积的14,则△ABC的面积是________(请直接写出答案).
    6.(2022秋·重庆大足·九年级统考期末)如图1,两个等腰直角三角形△ABC、△EDC的顶点C重合,其中∠ABC=∠EDC=90°,连接AE,取AE中点F,连接BF,DF.
    (1)如图1,当B、C、D三个点共线时,请猜测线段BF、FD的数量关系,并证明;
    (2)将△EDC绕着点C顺时针旋转一定角度至图2位置,根据“AE中点F”这个条件,想到取AC与EC的中点G、H,分别与点F相连,再连接BG,DH,最终利用△BGF≌△FHD(SAS)证明了(1)中的结论仍然成立.请你思考当△EDC绕着点C继续顺时针旋转至图3位置时,(1)中的结论是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;
    (3)连接BD,在△EDC绕点C旋转一周的过程中,△BFD的面积也随之变化.若AC=52,CB=32,请直接写出△BFD面积的最大值.
    必考点3
    平行四边形中的角度转换
    1.(2022春·江西新余·八年级新余四中校考期中)如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABE是等边三角形:②△ABC≌△EAD;③AD=AF:④S△ABE=S△CDF;⑤S△ABE=S△CEF其中正确的是( )
    A.①②③B.①④⑤C.①②⑤D.②③④
    2.(2022春·江苏南京·八年级统考期中)如图,在等边三角形ABC中,AB=4,P为AC上一点(与点A、C不重合),连接BP,以PA、PB为邻边作平行四边形PADB,则PD的取值范围是_______.
    3.(2022秋·辽宁朝阳·九年级校考期中)如图,▱ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论①BE⊥AC;②四边形BEFG是平行四边形;③EG=GF
    ;④EA平分∠GEF.其中正确的是________.
    4.(2022春·浙江·八年级期末)如图,四边形ABCD中,AB//CD,∠B=∠D,点E为BC延长线上一点,连接AE,AE交CD于H.∠DCE的平分线交AE于G.
    (1)求证:四边形ABCD为平行四边形;
    (2)如图1,若AB=2AD=10,H为CD的中点,HE=6,求AC的长;
    (3)如图2,若∠BAC=∠DAE
    ①∠AGC=2∠CAE,求∠CAE的度数;
    ②∠AGC=n∠CAE,∠CAE=_____°(用含有n的式子表示)
    5.(2022春·浙江杭州·八年级统考期末)如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.
    (1)求证:BE⊥CF;
    (2)若AB=a,CF=b,求BE的长.
    6.(2022春·湖北武汉·七年级统考期末)在平面直角坐标系中,点 A(a,6),B(4,b),
    (1)若 a,b 满足 (a  b  5)2  2a−b−1 0 ,
    ①求点 A,B 的坐标;
    ②点 D 在第一象限,且点 D 在直线 AB 上,作 DC⊥x 轴于点 C,延长 DC 到 P 使 得 PC=DC,若△PAB 的面积为 10,求 P 点的坐标;
    (2)如图,将线段 AB 平移到 CD,且点 C 在 x 轴负半轴上,点 D 在 y 轴负半轴上, 连接 AC 交 y 轴于点 E,连接 BD 交 x 轴于点 F,点 M 在 DC 延长线上,连 EM,3∠MEC+∠CEO=180°,点 N 在 AB 延长线上,点 G 在 OF 延长线上,∠NFG= 2∠NFB,请探究∠EMC 和∠BNF 的数量关系,给出结论并说明理由.
    必考点4
    平行四边形中勾股定理的运用
    1.(2022春·浙江温州·八年级统考期中)如图,一副三角板如图1放置,AB=CD=6,顶点E重合,将△DEC绕其顶点E旋转,如图2,在旋转过程中,当∠AED=75°,连接AD、BC,这时△ADE的面积是______.
    2.(2022春·广西贵港·八年级统考期中)如图,四边形ABCD为菱形,AB=3,∠ABC=60°,点M为BC边上一点且BM=2CM,过M作MN∥AB交AC,AD于点O,N,连接BN.若点P,Q分别为OC,BN的中点,则PQ的长度为________.
    3.(2022春·江苏南京·八年级校考期中)已知:如图,在平行四边形ABCD中,G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,垂足分别为E、F.
    (1)求证:四边形GEHF是平行四边形.
    (2)若AB=4,BC=7,当四边形GEHF是矩形时BD的长为 .
    4.(2022秋·辽宁辽阳·九年级校考期中)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为平面内一点,以CD为腰在CD右侧作等腰Rt△CDE,且∠CDE=90°,过点B作BF∥DE,且BF=DE,连接BD,DF,EF.
    (1)如图①,当点D在AC边上时,直接写出线段AF与AD的关系为 ;
    (2)将图①中的等腰Rt△CDE绕点C逆时针旋转α0°S△ABE
    ∴S△CDF>S△ABE
    故④错误
    ∵AD∥BC
    ∴S△ACE=S△DCE
    由④知,S△CDF=S△ABC
    ∴S△CDF−S△DCE=S△ABC−S△ACE
    即S△CEF=S△ABE
    故⑤正确
    即正确的有①②⑤
    故选:C.
    【点睛】本题考查了平行四边形的性质,等边三角形的判定与性质,全等三角形的判定与性质,等底等高的两个三角形面积相等,其中平行四边形的性质是解题的关键.
    2.(2022春·江苏南京·八年级统考期中)如图,在等边三角形ABC中,AB=4,P为AC上一点(与点A、C不重合),连接BP,以PA、PB为邻边作平行四边形PADB,则PD的取值范围是_______.
    【答案】23≤PD5,不符题意,舍去
    综上,存在某一时刻使得AC平分PE,此时t的值为4.
    【点睛】本题考查了平行四边形的判定与性质、勾股定理、矩形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),依据题意,正确分两种情况讨论是解题关键.
    必考点6
    平行四边形中的动点问题
    1.(2022秋·广东广州·九年级广州四十七中校考期末)如图1,Rt△ABC中,∠ACB=90°,AC=BC,D为CA上一动点,E为BC延长线上的动点,始终保持CE=CD.连接BD和AE,将AE绕A点逆时针旋转90°到AF,连接DF.
    (1)请判断线段BD和AF的位置关系并证明;
    (2)当S△ABD=14BD2时,求∠AEC的度数;
    (3)如图2,连接EF,G为EF中点,AB=22,当D从点C运动到点A的过程中,EF的中点G也随之运动,请求出点G所经过的路径长.
    【答案】(1)AF∥BH,证明见解析
    (2)∠AEC=67.5°
    (3)2
    【分析】(1)由题意可得∠ACB=∠ACE,继而证明出△BCD≌△ACESAS,然后利用外角的性质和平行线的判定求解即可;
    (2)延长BD交AE于点H,首先证明出四边形ABDF是平行四边形,然后由三角形的面积公式可得AH=12BD=12AE,从而可得BH垂直平分AE,继而由等腰三角形的性质进行求解即可;
    (3)连接AG、CG,过点G作GH⊥CE交CE延长线于H,GN⊥AC于N,首先根据等腰直角三角形的性质得到BC=AC=2,然后证明四边形CHGN是矩形,进而证明出△ANG≌△EHGAAS,得到G点所经过的路径长是以AC为边的正方形的对角线长度的一半,即可求得答案.
    【详解】(1)AF∥BH,证明如下:
    ∵∠ACB=90°,
    ∴∠ACE=180°−∠ACB=90°,
    ∴∠ACB=∠ACE,
    在△BCD和△ACE中,
    BC=AC∠BCD=∠ACECD=CE,
    ∴△BCD≌△ACESAS;
    ∴∠CAE=∠CBD,
    ∵将AE绕A点逆时针旋转90°到AF,
    ∴∠EAF=90°,
    ∵∠ADB=∠BCD+∠CBD,∠DAF=∠EAF+∠CAE,
    ∴∠ADB=∠FAD,
    ∴AF∥BH;
    (2)延长BD交AE于点H,
    ∵将AE绕A点逆时针旋转90°到AF,
    ∴AE=AF,∠EAF=90°,
    ∵△BCD≌△ACE,
    ∴BD=AE,∠CAE=∠CBD,
    ∴AF=BD,
    ∵AF∥BD,
    ∴四边形ABDF是平行四边形,
    ∵S△ABD=14BD2,
    ∴S四边形ABDF=12BD2,
    ∴BD·AH=12BD2,
    ∴AH=12BD=12AE,
    ∴BH垂直平分AE,
    ∴BA=BE,
    ∵AC=BC,∠ACB=90°,
    ∴∠ABE=45°,
    又∵BA=BE,
    ∴∠AEC=67.5°;
    (3)连接AG、CG,过点G作GH⊥CE交CE延长线于H,GN⊥AC于N,
    ∵∠ACB=90°,AC=BC,AB=22,
    ∴BC=AC=2,
    ∵GH⊥CE,GN⊥AC,∠ACH=90°,
    ∴四边形CHGN是矩形,
    ∵AF=AE,∠EAF=90°,G是EF中点,
    ∴AG=GE,AG⊥EF,
    ∵∠CAG+∠ACH+∠CEG+∠AGE=360°,
    ∴∠CAG+∠CEG=180°,
    ∵∠CEG+∠GEH=180°,
    ∴∠CAG=∠GEH,
    又∵∠ANG=∠GHE=90°,
    ∴△ANG≌△EHGAAS,
    ∴NG=GH,
    ∴四边形CHGN是正方形,
    ∴CG平分∠ACH,
    ∴点G在∠ACH的角平分线上运动,
    ∴当D从C运动到A点,G点所经过的路径长是以AC为边的正方形的对角线长度的一半,即为22AC=2.
    【点睛】本题考查了正方形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,旋转的性质等,综合性较强,有一定的难度,正确添加辅助线,熟练运用相关知识是解题的关键.
    2.(2022春·贵州遵义·八年级校考期末)如图,点P是□ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.
    (1)当点P与点O重合时如图1,线段OE与线段OF的数量关系是______.
    (2)如图2,点P在OC上运动时(不与点O与C重合),(1)中的结论是否成立?
    (3)点P在OC的延长线上运动时,当∠OFE=60°时,如图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?
    【答案】(1)OE=OF
    (2)成立,理由见解析
    (3)AE+CF=3OE
    【分析】(1)证明△AOE≌△COF即可得出结论;
    (2)作辅助线,构建全等三角形,证明△AOE≌△CGO,得OE=OG,再根据直角三角形斜边上的中线等于斜边的一半得出结论;
    (3)作辅助线,构建全等三角形,与(2)类似,同理得:△AOE≌△COG,再利用∠OFE=60°,得△EOF是等边三角形,根据勾股定理,以及含30度角的直角三角形的性质得出结论.
    【详解】(1)证明:∵四边形ABCD是平行四边形,
    ∴OA=OC,
    ∵AE⊥BP,CF⊥BP,
    ∴∠AEO=∠CFO=90°,
    ∵∠AOE=∠COF,
    ∴△AOE≌△COF(AAS),
    ∴OE=OF;
    (2)解:如图,(1)中的结论仍然成立,理由是:
    延长EO交CF的延长线于G,
    ∵AE⊥BP,CF⊥BP,
    ∴AE∥CF,
    ∴∠EAO=∠OCG,
    ∵AO=OC,∠AOE=∠COG,
    ∴△AOE≌△COG(ASA),
    ∴EO=OG,
    在Rt△EFG中,FO=12EG=OE;
    (3)解:AE+CF=3OE,理由是:
    如图3,延长EO、FC交于G,
    同理得:△AOE≌△COG,
    ∴OE=OG,AE=CG,
    在Rt△EGF中,OF=12EG=OE=OG,
    ∵∠OFE=60°,
    ∴△EOF是等边三角形,
    ∴∠GEF=60°,则∠G=30°,
    ∴GF=GE2−EF2=3EF =3OE,
    ∵GF=GC+CF=AE+CF,
    ∴AE+CF=3OE.
    【点睛】本题考查了平行四边形的性质、全等三角形的性质和判定以及等腰三角形的性质和判定,勾股定理,直角三角形斜边上的中线等于斜边的一半,含30度角的直角三角形的性质,解题的关键是利用平行四边形的对角线互相平分得全等的边相等的条件.
    3.(2022春·四川泸州·八年级统考期末)如图(a),直线l1∶y=kx+b经过点A、B,OA=OB=3,直线l2:y=32x−2交y轴于点C,且与直线l1交于点D,连接OD.
    (1)求直线l1的解析式;
    (2)求△OCD的面积;
    (3)如图(b),点P是直线l1上的一动点,连接CP交线段OD于点E,当△COE与△DEP的面积相等时,求点P的坐标;
    (4)在(3)的条件下,若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以D、C、P、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.
    【答案】(1)l1:y=−x+3
    (2)2
    (3)P65,95
    (4)H165,245、45,−145或−45,−65
    【分析】(1)由已知可以得到A、B的坐标,再利用待定系数法即可求得直线l1的解析式;
    (2)联立l1、l2的解析式可以得到D的坐标,在l2的解析式中令x=0,可以得到C坐标,然后可以得到△OCD的面积;
    (3)△COE与△DEP的面积相等,则S△CDO=S△PCD,则点P、O到CD的距离相等,故OP所在的直线与CD平行,即可求解;
    (4)分别按照PD、PC、DC为对角线三种情况分类讨论即可得解.
    【详解】(1)由已知可得A、B的坐标分别为:A(3,0)、B(0,3),
    ∴可得0=3k+b3=b,
    解得:k=-1,b=3,
    ∴直线l1的解析式为:y=-x+3;
    (2)联立l1、l2的解析式可以得到:
    y=−x+3y=32x−2,
    解之可得:x=2y=1,
    ∴D为(2,1),
    在l2的解析式中令x=0,可以得到y= -2,
    ∴C(0,-2),
    ∴△OCD底边OC上的高为2,
    在y=32x−2中令x=0可得y=-2,
    ∴OC=2,
    ∴S△OCD=12×2×2=2;
    (3)∵△COE与△DEP的面积相等,
    ∴S△CDO=S△CDE+S△OCE=S△PED+S△CED=S△PCD,
    ∴点P、O到CD的距离相等,故OP所在的直线与CD平行,
    ∴直线OP的表达式为:y=32x,
    ∴由y=−x+3y=32x可得:x=65y=95,
    则点P(65,95).
    (4)如图,可以画出图形如下,
    设使以D、C、P、H为顶点的四边形是平行四边形的点H坐标为(x,y),则:
    当对角线是PD时,由题意可得:
    x−652+y−952=2−02+1+22x−22+y−12=652+95+22,
    解之可得:x=165y=245,
    ∴此时H为165,245;
    当对角线是PC时,由题意可得:
    x−652+y−952=2−02+1+22x−02+y+22=65−22+95−12,
    解之可得:x=−45y=−65,
    ∴此时H为−45,−65;
    当对角线是CD时,由题意可得:
    x−22+y−12=652+95+22x−02+y+22=65−22+95−12,
    解之可得:x=45y=−145,
    ∴此时H为45,−145;
    综上所述,使以D、C、P、H为顶点的四边形是平行四边形的点H坐标为165,245、45,−145或−45,−65.
    【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、三角形面积的计算等,综合性强,难度适中.
    4.(2022春·吉林四平·八年级统考期末)如图1,直线y=kx+b分别交x轴,y轴于点A,点B,点C、P分别是线段OB,AB的中点,且OC=32,CP=2,动点D,E分别在直线CP和线段AB上,设点E的横坐标为m,线段CD的长为n(n>0),且m+n=3,以DO,DE为邻边作平行四边形ODEF.
    (1)求出直线AB的解析式.
    (2)当n=1时,请求出点F的坐标.
    (3)当点F落在△AOB的边OB或AB上时,求直接写出点F的坐标.
    【答案】(1)y=−34x+3
    (2)(1,0)或(3,0)
    (3)0,38
    【分析】(1)由OC,CP的长,可得出OB,OA的长,进而可得出点A,B的坐标,再利用待定系数法即可求出直线AB的解析式;
    (2)由n=1,结合m+n=3可得出n的值,由点D,E所在的位置,即可求出点D,E的坐标,再利用平行四边形的性质(对角线互相平分),即可求出点F的坐标;
    (3)依题意可知点D,E的坐标,利用平行四边形的性质可找出点F的坐标为m−n,−34m+32,当点F落在边OB上时,可得出m-n=0,结合m+n=3,即可求出m,n的值,将其代入点F的坐标中即可求出结论;当点F落在边AB上时,利用一次函数图象上点的坐标特征可得出32−34m=−34m−n+3,结合m+n=3可求出n=−2,这与n>0矛盾,进而可得出不存在该情况.
    (1)
    解:(1)∵OC=32,CP=2,且点C、P分别是线段OB,AB的中点,
    ∴OB=3,OA=4
    ∴点B坐标为点(0,3),A坐标为(4,0)
    把点A和点B的坐标分别代入解析式得:b=34k+b=0
    解得:b=3k=−34
    ∴直线AB的解析式为:y=−34x+3
    (2)
    (2)∵m+n=3,且n=1
    ∴m=2,
    ∴点E坐标为2,32
    点E与点P重合
    当点D在点C的左侧时,DE=1+2=3
    在□ODEF中,OF∥DE,OF=DE,∴F(3,0);
    当点D在点C的右侧时,DE=2-1=1
    在□ODEF中,OF∥DE,OF=DE,∴F(1,0);
    ∴点F坐标为(1,0)或(3,0)
    (3)
    点F坐标为0,38
    根据题意,可知:点D的坐标为(n,32),点E的坐标为(m,−34m+3),
    ∵四边形ODEF为平行四边形,
    ∴点F的坐标为0+m−n,0−34m+3−32,即m−n,−34m+32,
    当点F落在边OB上时,m−n=0,
    又∵m+n=3,
    ∴m=n=32
    ∴点F的坐标为0,38;
    ∴当点F落在AB上时,32−34m=−34m−n+3
    又∵m+n=3,
    ∴n=−2(不符合题意,舍去).
    ∴当点F落在△AOB的边OB或AB上时,点F的坐标为0,38.
    【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)利用一次函数图象上的点的坐标特征,找出点D,E的坐标;(3)利用平行四边形的性质,用m,n的代数式表示出点F的坐标.
    5.(2022春·广东江门·八年级校考期中)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以2cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点P,Q运动的时间为ts.
    (1)CD边的长度为______cm,t的取值范围为______.
    (2)从运动开始,当t取何值时,PQ∥CD?
    (3)从运动开始,当t取何值时,PQ=CD?
    【答案】(1)10,0≤t≤9
    (2)t=4
    (3)t=8或t=4
    【分析】(1)作辅助线,构建矩形ABED,利用勾股定理可得CD的长,根据两动点P,Q运动路程和速度可得t的取值范围;
    (2)根据PD=CQ列方程可得t=4时PQ∥CD,
    (3)由PQ=CD,根据CQ=2t=6+6+12−t,可得t=8,再结合(2)可得出结论;
    【详解】(1)如图1,过点D作DE⊥BC于E,则∠DEB=∠DEC=90°,
    ∵AD∥BC,
    ∴∠A+∠B=180°,
    ∵∠B=90°,
    ∴∠A=∠B=∠DEB=90°,
    ∴四边形ABED是矩形,
    ∴DE=AB=8,BE=AD=12,
    ∵BC=18,
    ∴CE=18−12=6,
    由勾股定理得:CD=62+82=10 (cm);
    ∵点P从点A出发,以1cm/s的速度向点D运动,AD=12cm,
    ∴点P运动到D的时间为:12s,
    同理得:点Q运动到点B的时间为:182=9s,
    ∴0≤t≤9;
    故答案为:10,0≤t≤9;
    (2)如图2,∵AD∥BC,
    ∴PD∥CQ,
    当PD=CQ时,四边形DPQC是平行四边形,
    ∴PQ∥CD,
    ∴12−t=2t,
    ∴t=4,
    即当t=4时,PQ∥CD,此时PD=CQ;
    (3)如图3,过点P作PF⊥BC于F,过点D作DE⊥BC于E,
    当PQ=CD时,
    ∵PF=DE,
    ∴Rt△PQF≌Rt△DCE,
    ∴FQ=CE=6,
    ∵∠PFE=∠DEF=∠ADE=90°,
    ∴四边形DPFE矩形,
    ∴PD=EF=12−t,
    ∴CQ=QF+EF+CE,即6+6+12−t=2t,
    ∴t=8,
    综合(2)、(3)所述,当t=8或t=4时,PQ=CD;
    【点睛】此题是四边形综合题:动点问题,考查了平行四边形、矩形、勾股定理,直角三角形的性质等知识,综合性较强,难度适中.利用分类讨论和数形结合是解题的关键.
    6.(2022春·浙江温州·八年级校考期中)如图,在平面直角坐标系中,四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(-16,0), 线段BC 交y轴于点D,点D的坐标是(0,8),线段CD=6.动点P从点O出发,沿射线OA的方向以每秒2个单位的速度运动,同时动点Q从点D出发,以每秒1个单位的速度向终点B运动,当点Q运动到点B时,点P随之停止运动,运动时间为t秒.
    (1)用t的代数式表示:BQ=_______,AP=_______;
    (2)若以A,B,Q,P为顶点的四边形是平行四边形时,求t的值;
    (3)当△BQP恰好是等腰三角形时,求t的值.
    【答案】(1)BQ=10-t,AP=16-2t(0CE−CB,
    当C、B、E三点共线时(点E在CB的延长线上时),
    BE=CE-CB,
    综上所述BE≥CE-CB=5-3=2,
    即BE≥2,
    ∴BE的最小值为2,
    当BE=2时,BF2+BD2−BC2=4,
    故答案为:4.
    【点睛】本题考查了矩形的性质、旋转的性质、平行四边形的性质和勾股定理的应用,解决本题的关键是对以上性质的掌握是否熟练.
    5.(2022春·辽宁沈阳·八年级统考期末)等边△ABC中,AB=14.平面内有一点D,BD=6,AD=10, 则CD的长为_____.
    【答案】219或16
    【分析】分点D在△ABC的内部和点D在△ABC的外部两种情况,先利用等边三角形的性质可得BE=7,CE=73,再根据勾股定理可得BF=337,从而可得DG、CG的长,然后在Rt△CDG中,利用勾股定理即可得.
    【详解】由题意,分以下两种情况:
    (1)如图1,点D在△ABC的内部
    过点C作CE⊥AB于点E,过点D作DF⊥AB于点F,作DG⊥CE于点G
    则四边形DFEG是矩形
    ∴DG=EF,EG=DF
    ∵ △ABC是等边三角形,AB=14
    ∴BE=12AB=7,CE=32AB=73
    设BF=x,则AF=AB−BF=14−x
    在Rt△ADF中,DF2=AD2−AF2=100−(14−x)2
    在Rt△BDF中,DF2=BD2−BF2=36−x2
    则100−(14−x)2=36−x2
    解得x=337
    即BF=337
    ∴DG=EF=BE−BF=167,EG=DF=36−x2=1573
    ∴CG=CE−EG=73−1573=3473
    在Rt△CDG中,CD=DG2+CG2=(167)2+(3473)2=219
    (2)如图2,点D在△ABC的外部
    过点C作CE⊥AB于点E,过点D作DF⊥AB于点F,作DG⊥CE,交CE延长线于点G
    同理可得:CE=73,DG=EF=167,EG=DF=1573
    ∴CG=CE+EG=73+1573=6473
    在Rt△CDG中,CD=DG2+CG2=(167)2+(6473)2=16
    综上,CD的长为219或16
    故答案为:219或16.
    【点睛】本题考查了矩形的判定与性质、等边三角形的性质、勾股定理等知识点,依据题意,正确分两种情况讨论,并通过作辅助线,构造直角三角形是解题关键.
    6.(2022秋·天津·九年级校考期末)在平面直角坐标系中,矩形OABC,O为原点,A3,0,B3,4,C0,4,将△OBC绕点B逆时针旋转,点O,C旋转后的对应点为O',C'.
    (1)如图(1),当∠CBC'=30°时,求C'的坐标;
    (2)如图(2),当点O'恰好落在x轴上时,O'C'与AB交于点D.
    ①此时DB与DO'是否相等,说明理由;
    ②求点D的坐标;
    (3)求△AO'C'面积的最大值.(直接写出答案即可)
    【答案】(1)C'3−332,52
    (2)①DB=DO';②D3,78
    (3)14
    【分析】(1)如图①中,过点C'作C'H⊥BC于点H.解直角三角形求出BH,CH,可得结论;
    (2)①此时DB与DO'相等,证明∠DBO'=∠DO'B即可;
    ②设DB=DO'=x,再利用勾股定理构建方程求出x即可;
    (3)如图③中,当点C'值AB的延长线上时,△AO'C'的面积最大.
    【详解】(1)如图①中,过点C'作C'H⊥BC于点H.
    ∵四边形OABC是矩形,B(3,4),
    ∴AB=OC=4,BC=3,
    在Rt△ BC'H中,∠BHC'=90°,∠HBC'=30°,
    ∴HC'=12BC'=32,BH=332,
    ∴CH=3−332,
    ∴C'3−332,52;
    (2)①结论:DB=DO'.
    理由:∵BO=BO',BA⊥OO',
    ∴∠OBA=∠ABO',
    ∵AB∥OC,
    ∴∠ABO=∠COB=∠BO'C',
    ∴∠DBO'=∠DO'B,
    ∴DB=DO';
    ②∵BO=BO',BA⊥OO',
    ∴OA=AO'=3,
    设BD=DO'=x,
    在Rt△ADO'中,AD2+AO'2=O'D2,
    ∴(4−x)2+32=x2,
    ∴x=258,
    ∴AD=4−258=78,
    ∴D(3,78).
    (3)如图③中,当点C'值AB的延长线上时,此时点A到O'C'的距离最大,即△AO'C'的面积最大.
    △AO'C'的面积的最大值=12×7×4=14.
    【点睛】本题属于四边形综合题,考查了矩形的性质,解直角三角形,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.
    必考点12
    菱形中的全等三角形的构造
    1.(2022春·山东济南·八年级统考期末)如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上一点,且CD=DE,连接BE,分别交AC,AD于点F、G,连接OG,则下列结论:
    ①OG=12AB;②S四边形ODGF>S△ABF;③由点A、B、D、E构成的四边形是菱形;④S△ACD=4S△BOG,其中正确的结论是( )
    A.①②B.①②③C.①③④D.②③④
    【答案】C
    【分析】①由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ABD的中位线,得出OG=12AB,①正确;
    ③先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,③正确;
    ②连接FD,由等边三角形的性质和角平分线的性质得F到△ABD三边的距离相等,则S△BDF=S△ABF=2S△BOF=2S△DOF=S四边形ODGF,则S四边形ODGF=S△ABF,②错误;即可得出结论.
    ④∵连接CG,由O、G分别是AC,AD的中点,得到S△AOG=S△COG,S△ACG=S△DCG,则S△ACD=4S△AOG,再由S△AOG=S△BOG,得到S△ACD=4S△BOG,故④正确;
    【详解】∵四边形ABCD是菱形,
    ∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,
    ∴∠BAG=∠EDG,
    ∵CD=DE,
    ∴AB=DE,
    在△ABG和△DEG中,
    ∠AGB=∠DGE∠BAG=∠EDGAB=DE,
    ∴△ABG≌△DEG(AAS),
    ∴AG=DG,
    ∴OG是△ABD的中位线,
    ∴OG=12AB,故①正确;
    ∵AB∥CE,AB=DE,
    ∴四边形ABDE是平行四边形,
    ∵∠BCD=∠BAD=60°,
    ∴△ABD、△BCD是等边三角形,
    ∴AB=BD=AD,∠ODC=60°,
    ∴平行四边形ABDE是菱形,故③正确;
    ∵连接CG,
    ∵O、G分别是AC,AD的中点,
    ∴S△AOG=S△COG,S△ACG=S△DCG,
    ∴S△ACD=4S△AOG,
    ∵OG∥AB,
    ∴S△AOG=S△BOG,
    ∴S△ACD=4S△BOG,故④正确;
    连接FD,如图:
    ∵△ABD是等边三角形,AO平分∠BAD,BG平分∠ABD,
    ∴F到△ABD三边的距离相等,
    ∴S△BDF=S△ABF=2S△BOF=2S△DOF=S四边形ODGF,
    ∴S四边形ODGF=S△ABF,故②错误;
    正确的是①③④,
    故选C.
    【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理以及三角形面积等知识,综合运用以上知识是解题的关键.
    2.(2022秋·浙江绍兴·八年级统考期末)如图,AB∥CD,AC平分∠BAD,BD平分∠ADC,AC和BD交于点E,F,G分别是线段AB和线段AC上的动点,且AF=CG,若DE=1,AB=2,则DF+DG的最小值为______.
    【答案】22
    【分析】先根据AC平分∠BAD,BD平分∠ADC,AB∥CD证明四边形ABCD是菱形.在AC上取点B',使AB'=AB,连接FB',作点D关于AB的对称点D',连接D'F、DD'.作BH⊥CD于点H,作BM⊥DD'于点M,则△B'AF≌△DCG(SAS),得出B'F=DG,所以DF+DG=D'F+B'F,当B'、F、D'三点在同一直线上时,DF+DG=D'F+B'F取最小值为B'D'.再根据勾股定理求出B'D'即可.
    【详解】解:连接BC,
    ∵AC平分∠BAD,BD平分∠ADC,AB∥CD,
    ∴∠DAC=∠BAC,∠ADB=∠CDB,∠AED=180°-180°÷2=90°,
    ∵AB∥CD,
    ∴∠DCA=∠BAC,
    ∴∠DCA=∠DAC,
    ∴DA=DC,
    同理:DA=BA,
    ∴DC=AB,
    ∵AB∥CD,
    ∴四边形ABCD是平行四边形,
    ∵DA=DC,
    ∴四边形ABCD是菱形.
    如图.在AC上取点B',使AB'=AB,连接FB',作点D关于AB的对称点D',连接D'F、DD'.
    作B'H⊥CD于点H,作B'M⊥DD'于点M.
    ∴DF=D'F,
    ∵AF=CG,∠B'AF=∠DCG,AB'=AB=CD,
    ∴△B'AF≌DCG(SAS),
    ∴B'F=DG,
    ∴DF+DG=D'F+B'F,
    ∴当B'、F、D'三点在同一直线上时,DF+DG=D'F+B'F取最小值为B'D'.
    ∵DE=1,AD=AB=2,
    ∴∠DAE=30°,∠ADE=60°,
    ∴AC=3AD=23,CB'=23-2,
    ∴B'H=12B'C=3-1,CH=3B'H=3-3,
    ∴DH=DC-CH=2-(3-3)=3−1,
    ∵四边形DHB′M是矩形
    ∴DM=B'H=3-1,MB′=DH=3−1,
    ∴D'M=DD'-DM=3AD-DM=23-(3-1)=3+1,
    ∴D'B'=MB'2+MD'2=(3−1)2+(3+1)2=22.
    即DF+DG的最小值为22.
    故答案为:22.
    【点睛】本题考查了线段之和最小值问题,作辅助线推出△B'AF≌△DCG是解题的关键.
    3.(2022春·黑龙江哈尔滨·八年级统考期末)在平行四边形ABCD中,∠BAD的平分线交边BC于点E,交DC的延长线于点F.
    (1)如图1,求证:CE=CF;
    (2)如图2,FG∥BC,FG=EC,连接DG、EG,当∠ABC=120°时,求证:∠BDG=60°;
    (3)如图3,在(2)的条件下,当BE=2CE,AE=43时,求线段BD的长.
    【答案】(1)见解析
    (2)见解析
    (3)BD=27
    【分析】(1)根据角平分线的性质可得∠1=∠2,然后再运用平行四边形的性质说明∠2=∠3,∠1=∠F,进一步说明∠3=∠F,最后运用等边对等角即可证明结论;
    (2)延长AB、FG交于点H,连接DH,可证得四边形AHFD是平行四边形,四边形AHFD是菱形,推出△FDH和△ADH都是等边三角形,再证明△DFG≌△DHB(SAS),得出∠FDG=∠HDB,进而证得结论;
    (3)如图3,连接DE,根据平行四边形性质和角平分线性质可得∠BAE=∠AEB=180°−∠ABC2=30°,过点B作BM⊥AE于点M,可得EM=12AE=23,利用勾股定理求得AB=CD=BE=4,过点D作DN⊥BC于点N,结合勾股定理即可解答.
    (1)
    明:如图1:∵AF是∠BAD平分线.
    ∴∠1=∠2
    ∵ABCD是平行四边形.
    ∴AD∥BC,AB∥CD
    ∴∠2=∠3,∠1=∠F,
    ∴∠3=∠F,
    ∴CE=CF.
    (2)
    证明:如图2;延长AB、FG交于点H,连接DH,
    ∴FG∥CE,CE∥AD,
    ∴FH∥BC∥AD,
    ∵AH∥DF,
    ∴四边形AHFD是平行四边形,
    ∵∠DFA=∠FAB=∠DAF,
    ∴DA=DF,
    ∴四边形AHFD是菱形,
    ∴FD=FH,AD=AH,
    ∵∠ABC=120°,
    ∴∠DFH=∠DAH=60°,
    ∴△FDH和△ADH都是等边三角形,
    ∴∠DFG=∠DHB=∠FDH=60°,FD=HD,
    ∵四边形BCFH是平行四边形,
    ∴BH=CF,
    ∵FG=CE,CE=CF,
    ∴FG=BH,
    在△DFG和△DHB中,
    FG=BH∠GFD=∠BHDFD=HD
    ∴△DFG≌△DHB(SAS),
    ∴∠FDG=∠HDB,
    ∴∠BDG=∠HDB+∠HDG=∠FDG+∠HDG=∠FDH=60°.
    (3)
    解:如图3,连接DE,
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AD∥BC,
    ∴∠DAE=∠AEB,∠DCB=180°-∠ABC=60°,
    ∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∴∠BAE=∠AEB=180°−∠ABC2=30°
    过点B作BM⊥AE于点M
    ∴EM=12AE=23
    在Rt△BME中
    ∵∠BEM=30°
    ∴BM=12BE
    ∵BE2−BM2=EM2
    ∴BE2−(12BE)2=(23)2,解得:BE=4
    ∵BE=2CE
    ∴CE=2
    过点D作DN⊥BC于点N,则∠NDC=90°-∠DCB=30°
    ∴CN=12CD=2=CE
    ∴点N与点E重合
    ∴∠DEC=90°
    ∴DE2=CD2−CE2=42−22=12
    ∴BD=DE2+BE2=12+16=27 .
    【点睛】本题主要考查平行四边形的判定与性质、菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、含30°的直角三角形性质、勾股定理等知识点,正确地作出辅助线是解答本题的关键.
    4.(2022春·山东德州·八年级统考期末)如图1,在平面直角坐标系中,直线y=−34x+b分别与x轴、y轴交于点A、B,且点A的坐标为(8,0),四边形ABCD是正方形.
    (1)求b的值和点D的坐标;
    (2)点M是线段AB上的一个动点(点A、B除外).
    ①如图2,将△BMC沿CM折叠,点B的对应点是点E,连接ME并延长交AD边于点F,问△AMF的周长是否发生变化?若不变,求出其值;若变化,请说明理由;
    ②点P是x轴上一个动点,Q是坐标平面内一点,探索是否存在一个点P,使得以A、B、P、Q为顶点的四边形是菱形?若不存在,请说明理由;若存在,请直接写出点Q的坐标.
    【答案】(1)b的值为6,点D的坐标为(14,8)
    (2)①△AMF的周长不变,△AMF的周长为20;②存在,点Q的坐标为(0,−6)或(−10,6)或(10,6)或(254,6)
    【分析】(1)将点A(8,0)代入y=−34x+b,即可求出b的值,从而即得出直线AB的解析式为y=−34x+6,进而即得出A(0,6).过点D作DH⊥x轴于点H,由正方形的性质结合题意利用“AAS”易证△AOB≅△DHA,得出DH=OA=8,OH=OA+AH=14,即得出D(14,8);
    (2)①由折叠和正方形的性质可知BM=EM,CD=CE=4,∠CDF=∠CEF=90°,即易证△CDF≅△CEF(HL),得出DF=EF.再由△AMF的周长=AM+ME+EF+AF=AM+BM+DF+AF=AB+AD,结合勾股定理即可求出答案;②分类讨论ⅰ当AP为菱形的对角线时,ⅱ当AQ为菱形的对角线时和ⅲ当AB为菱形的对角线时,根据菱形的性质结合图形即可求出答案.
    【详解】(1)解:将点A(8,0)代入y=−34x+b,得0=−34×8+b,
    解得:b=6,
    ∴直线AB的解析式为y=−34x+6,
    当x=0,时y=6,
    ∴A(0,6),
    ∴OB=6,OA=8.
    如图,过点D作DH⊥x轴于点H,
    ∵四边形ABCD为正方形,
    ∴AB=AD,∠BAD=90°,
    ∴∠BAO+∠DAH=90°.
    ∵∠BAO+∠ABO=90°,
    ∴∠ABO=∠DAH.
    又∵∠AOB=∠DHA=90°,
    ∴△AOB≅△DHA(AAS),
    ∴DH=OA=8,AH=OB=6,
    ∴OH=OA+AH=14,
    ∴D(14,8);
    (2)解:①由折叠的性质可知BM=EM,BC=CE=4,∠CBM=∠CEM=90°,
    ∴CD=CE=4,∠CDF=∠CEF=90°,
    又∵CF=CF,
    ∴△CDF≅△CEF(HL)
    ∴DF=EF.
    ∵△AMF的周长=AM+MF+AF,MF=ME+EF,
    ∴△AMF的周长=AM+ME+EF+AF=AM+BM+DF+AF=AB+AD.
    ∵OB=6,OA=8,
    ∴AB=OA2+OB2=10,
    ∴△AMF的周长=10+10=20,
    故△AMF的周长不变,且为20;
    ②存在以A、B、P、Q为顶点的四边形是菱形,理由如下:
    设P(t,0),Q(x,y).
    分类讨论:ⅰ当AP为菱形的对角线时,如图菱形ABP1Q1,此时AB=BP1.
    ∵xA+xP=xQyB+yQ=yABP1=OB2+OP12,
    即8+t=x6+y=010=62+t2,
    解得:x1=16y1=−6t1=8(舍),x2=0y2=−6t2=−8;
    即此时Q(0,-5);
    ⅱ当AQ为菱形的对角线时,如图菱形ABQ2P2和ABQ4P4,此时AB=AP2和AB=AP4.
    同理可得:8+x=ty=610=8−t,
    解得:x1=−10y1=6t1=−2,x2=10y2=6t2=18;
    即此时Q(-10,6)或(10,6);
    ⅲ当AB为菱形的对角线时,如图菱形AQ3BP3,此时AP3=BP3.
    同理可得8=t+xy=636+t2=8−t,
    解得:x=254y=6t=74;
    即此时Q(254,6);
    综上可知点Q的坐标为(0,−6)或(−10,6)或(10,6)或(254,6)时,以A、B、P、Q为顶点的四边形是菱形.
    【点睛】本题考查正方形的性质,三角形全等的判定和性质,折叠的性质,勾股定理以及菱形的判定和性质等知识.正确的作出辅助线并利用数形结合的思想是解题关键.
    5.(2022春·河南鹤壁·八年级鹤壁市外国语中学校考期末)如图,在平行四边形ABCD中,两条对角线相交于点O,EF经过点O且垂直于AC,分别与边AD,BC交于点F,E.
    (1)求证:四边形AECF为菱形;
    (2)若AD=3,CD=2,且∠ADC=45°,直接写出四边形AECF的面积.
    【答案】(1)见解析
    (2)54
    【分析】(1)根据平行四边形、平行线的性质得出OA=OC,OB=OD,AD∥BC,进而得出∠FDO=∠EBO,由全等三角形的判定(角边角)得出△FDO≌△EBO,再利用全等三角形的性质得出OF=OE,最后根据菱形的判定及已知EF⊥AC即可证明.
    (2)设辅助线CG⊥AD于点G,利用勾股定理得出CG的值,由(1)已知四边形AECF为菱形,根据菱形的性质设AF=t,则FG=2−t,CF=t,利用勾股定理建立等式求解得出t值,最后利用菱形的性质及三角形面积公式求解即可.
    (1)
    ∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,
    ∴OA=OC,OB=OD,AD∥BC.
    ∴∠FDO=∠EBO.
    ∵{∠FDO=∠EBO,OD=OB,∠DOF=∠BOE,
    ∴△FDO≌△EBO.
    ∴OF=OE.
    ∵EF⊥AC,且EF,AC互相平分,
    ∴四边形AECF为菱形.
    (2)
    如图,作CG⊥AD于点G,
    ∵AD=3,CD=2,且∠ADC=45°,∠CGD=∠CGF=90°,
    ∴∠ADC=∠GCD=45°.
    ∴CG=GD,△CGD是等腰直角三角形.
    ∵CG2+GD2=CD2,即2CG2=2,
    ∴CG=GD=1,AG=AD−GD=3−1=2.
    ∵由(1)已知四边形AECF是菱形,
    ∴AF=CF.
    设AF=t,则FG=2−t,CF=t,
    ∵FG2+CG2=CF2,即(2−t)2+1=t2,
    ∴解得t=54.
    ∴AF=54.
    ∴S菱形AECF=2S△AFE=2×12AF⋅CG=2×12×54×1=54.
    【点睛】本题考查菱形的判定与性质,平行四边形的性质,全等三角形的判定与性质,勾股定理等的理解与综合应用能力.对角线互相垂直平分的四边形是菱形.菱形四条边都相等.两角及其夹边分别相等的三角形全等.平行四边形的对边平行且相等;平行四边形的两条对角线互相平分.两全等三角形的对应边相等,对应角相等.灵活利用菱形的判定与性质,全等三角形的判定与性质,根据勾股定理建立等式关系是解本题的关键.
    6.(2022春·江苏淮安·八年级统考期末)如图,平行四边形ABCD中,AB⊥AC,AC=2AB.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转β°0

    相关学案

    苏科版八年级数学下册专题13.8期末真题重组卷同步学案(学生版+解析):

    这是一份苏科版八年级数学下册专题13.8期末真题重组卷同步学案(学生版+解析),共27页。

    数学苏科版(2024)第10章 分式10.1 分式学案设计:

    这是一份数学苏科版(2024)第10章 分式10.1 分式学案设计,共54页。学案主要包含了变式1-1,变式1-2,变式1-3,变式2-1,变式2-2,变式2-3,变式3-1,变式3-2等内容,欢迎下载使用。

    苏科版(2024)八年级下册10.1 分式导学案:

    这是一份苏科版(2024)八年级下册10.1 分式导学案,共43页。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map