年终活动
搜索
    上传资料 赚现金

    苏科版八年级数学下册专题9.9四边形中的最值问题专项训练(30道)同步学案(学生版+解析)

    苏科版八年级数学下册专题9.9四边形中的最值问题专项训练(30道)同步学案(学生版+解析)第1页
    苏科版八年级数学下册专题9.9四边形中的最值问题专项训练(30道)同步学案(学生版+解析)第2页
    苏科版八年级数学下册专题9.9四边形中的最值问题专项训练(30道)同步学案(学生版+解析)第3页
    还剩42页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏科版八年级数学下册专题9.9四边形中的最值问题专项训练(30道)同步学案(学生版+解析)

    展开

    这是一份苏科版八年级数学下册专题9.9四边形中的最值问题专项训练(30道)同步学案(学生版+解析),共45页。
    专题9.9 四边形中的最值问题专项训练(30道)【苏科版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可强化学生对四边形中最值问题模型的记忆与理解!一.选择题(共10小题)1.(2022春•重庆期末)如图,矩形ABCD中,AB=23,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是(  )A.43+3 B.221 C.23+6 D.452.(2022•灞桥区校级模拟)如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是(  )A.5 B.7 C.72 D.7223.(2022春•中山市期末)如图,在边长为a的正方形ABCD中,E是对角线BD上一点,且BE=BC,点P是CE上一动点,则点P到边BD,BC的距离之和PM+PN的值(  )A.有最大值a B.有最小值22a C.是定值a D.是定值22a4.(2022春•三门峡期末)如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是(  )A.2 B.4 C.2 D.225.(2022春•滨湖区期末)如图,已知菱形ABCD的面积为20,边长为5,点P、Q分别是边BC、CD上的动点,且PC=CQ,连接PD、AQ,则PD+AQ的最小值为(  )A.45 B.89 C.10 D.726.(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是(  )A.2 B.1 C.5−1 D.5−27.(2022•龙华区二模)如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为13−2.其中正确的有(  )A.1个 B.2个 C.3个 D.4个8.(2022•南平校级自主招生)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为(  )A.4 B.4.8 C.5.2 D.69.(2022春•崇川区期末)如图,正方形ABCD边长为1,点E,F分别是边BC,CD上的两个动点,且BE=CF,连接BF,DE,则BF+DE的最小值为(  )A.2 B.3 C.5 D.610.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为(  )A.2 B.2 C.22 D.4二.填空题(共10小题)11.(2022春•江城区期末)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=6,BC=2.运动过程中点D到点O的最大距离是    .12.(2022•东莞市校级一模)如图,在矩形ABCD中,AB=6,AD=5,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+DQ的最小值为    .13.(2022•钱塘区一模)如图,在矩形ABCD中,线段EF在AB边上,以EF为边在矩形ABCD内部作正方形EFGH,连结AH,CG.若AB=10,AD=6,EF=4,则AH+CG的最小值为    .14.(2022春•东城区期中)在正方形ABCD中,AB=5,点E、F分别为AD、AB上一点,且AE=AF,连接BE、CF,则BE+CF的最小值是    .15.(2022春•虎林市期末)如图,在Rt△ABC中,∠BAC=90°,且BA=12,AC=16,点D是斜边BC上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为    .16.(2022•灞桥区校级三模)在菱形ABCD中,∠D=60°,CD=4,E为菱形内部一点,且AE=2,连接CE,点F为CE中点,连接BF,取BF中点G,连接AG,则AG的最大值为    .17.(2022春•靖江市校级期末)如图,线段AB的长为10,点D在AB上,△ACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH的对角线交点为O,连接OB,则线段BO的最小值为    .18.(2022春•郫都区期末)如图,在矩形ABCD中,AB=4,AD=8,点E是BC边上一动点,作点B关于AE的对称点F,连接CF,点P为CF中点,则DP的最小值为    .19.(2022春•江都区期中)如图,矩形ABCD中,AB=4,AD=23,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是    .20.(2022春•如东县期中)如图,已知AB=22,C为线段AB上的一个动点,分别以AC,CB为边在AB的同侧作菱形ACED和菱形CBGF,点C,E,F在一条直线上,∠D=120°.P、Q分别是对角线AE,BF的中点,当点C在线段AB上移动时,点P,Q之间的距离最短为   (结果保留根号).三.解答题(共10小题)21.(2022•禹城市二模)(1)如图①,已知正方形ABCD的边长为4,点M和N分别是边BC,CD上两点,且BM=CN,连AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动,连接AM和BN,交于点P.求△APB周长的最大值.22.(2022春•东坡区校级月考)正方形ABCD中,E、F是AD上的两个点,AE=DF,连CF交BD于点M,连AM交BE于点N,连接DN.如果正方形的边长为2.(1)求证:BE⊥AM;(2)求DN的最小值.23.(2022•黄埔区模拟)如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.(1)试探究BE与BF的数量关系,并证明你的结论;(2)求EF的最大值与最小值.24.(2022春•洪山区期中)如图1,E,F是正方形ABCD的边上两个动点,满足AE=DF,连接CF交BD于G,连接BE交AG于点H(1)求证:AG⊥BE;(2)如图2,连DH,若正方形的边长为4,则线段DH长度的最小值是   .25.(2022•宁德)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为3+1时,求正方形的边长.26.(2022•南充模拟)如图,M,N是正方形ABCD的边CD上的两个动点,满足CM=DN,AC,BM相ON上滑动,以AB为边作正方形ABCD,对角线AC、BD相交于点P,连接OC.(1)求OC的最大值;(2)求证:无论点A、点B怎样运动,点P都在∠AOB的平分线上;(3)若OP=42cm,求OA的长.30.(2012秋•吴中区月考)如图①,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)连接MN,△BMN是等边三角形吗?为什么?(2)求证:△AMB≌△ENB;(3)①当M点在何处时,AM+CM的值最小;②如图②,当M点在何处时,AM+BM+CM的值最小,请你画出图形,并说明理由. 专题9.9 四边形中的最值问题专项训练(30道)【苏科版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可强化学生对四边形中最值问题模型的记忆与理解!一.选择题(共10小题)1.(2022春•重庆期末)如图,矩形ABCD中,AB=23,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是(  )A.43+3 B.221 C.23+6 D.45【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【解答】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC=AB2+BC2=43,∴AC=2AB,∴∠ACB=30°,AC=2AB=43,∵∠BCE=60°,∴∠ACE=90°,∴AE=(43)2+62=221,故选:B.2.(2022•灞桥区校级模拟)如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是(  )A.5 B.7 C.72 D.722【分析】如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,推出△ADM是等腰直角三角形,推出AD=22AM,推出当AM的值最大时,AD的值最大,利用三角形的三边关系求出AM的最大值即可解决问题;【解答】解:如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=22AM,∴当AM的值最大时,AD的值最大,∵AM≤AC+CM,∴AM≤7,∴AM的最大值为7,∴AD的最大值为722,故选:D.3.(2022春•中山市期末)如图,在边长为a的正方形ABCD中,E是对角线BD上一点,且BE=BC,点P是CE上一动点,则点P到边BD,BC的距离之和PM+PN的值(  )A.有最大值a B.有最小值22a C.是定值a D.是定值22a【分析】连接BP,作EF⊥BC于点F,由正方形的性质可知△BEF为等腰直角三角形,BE=a,可求EF,利用面积法得S△BPE+S△BPC=S△BEC,将面积公式代入即可.【解答】解:如图,连接BP,作EF⊥BC于点F,则∠EFB=90°,∵正方形的性质可知∠EBF=45°,∴△BEF为等腰直角三角形,∵正方形的边长为a,∴BE=BC=a,∴BF=EF=22BE=22a,∵PM⊥BD,PN⊥BC,∴S△BPE+S△BPC=S△BEC,∴12BE×PM+12BC×PN=12BC×EF,∵BE=BC,∴PM+PN=EF=22a.则点P到边BD,BC的距离之和PM+PN的值是定值22a.故选:D.4.(2022春•三门峡期末)如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是(  )A.2 B.4 C.2 D.22【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.【解答】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=12CE.当点F在EC上除点C、E的位置处时,有DP=FP.由中位线定理可知:P1P∥CE且P1P=12CF.∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB=2,AD=1,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=1.∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角BCP1中,CP1=BC=1.∴BP1=2.∴PB的最小值是2.故选:C.5.(2022春•滨湖区期末)如图,已知菱形ABCD的面积为20,边长为5,点P、Q分别是边BC、CD上的动点,且PC=CQ,连接PD、AQ,则PD+AQ的最小值为(  )A.45 B.89 C.10 D.72【分析】过点A作AM⊥BC于点M,延长AM到点A′,使A′M=AM,根据菱形的性质和勾股定理可得BM=3,以点B为原点,BC为x轴,垂直于BC方向为y轴,建立平面直角坐标系,可得B(0,0),A(3,4),C(5,0),D(8,4),A′(3,﹣4),然后证明△ABP≌△ADQ(SAS),可得AP=AQ=A′P,连接A′D,AP,A′P,由A′P+PD>A′D,可得A′,P,D三点共线时,PD+A′P取最小值,所以PD+AQ的最小值=PD+A′P的最小值=A′D,利用勾股定理即可解决问题.【解答】解:如图,过点A作AM⊥BC于点M,延长AM到点A′,使A′M=AM,∵四边形ABCD是菱形,∴AB=BC=AD=5,∠ABC=∠ADC,∵菱形ABCD的面积为20,边长为5,∴AM=4,在Rt△ABM中,根据勾股定理得:BM=AB2−AM2=3,以点B为原点,BC为x轴,垂直于BC方向为y轴,建立平面直角坐标系,∴B(0,0),A(3,4),C(5,0),D(8,4),A′(3,﹣4),∵PC=CQ,BC=CD,∴BP=DQ,在△ABP和△ADQ中,AB=AD∠ABC=∠ADCBP=DQ,∴△ABP≌△ADQ(SAS),∴AP=AQ=A′P,连接A′D,AP,A′P,∵A′P+PD>A′D,∴A′,P,D三点共线时,PD+A′P取最小值,∴PD+AQ的最小值=PD+A′P的最小值=A′D=(8−3)2+(4+4)2=89.故选:B.6.(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是(  )A.2 B.1 C.5−1 D.5−2【分析】根据正方形的性质可得AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,然后利用“HL”证明Rt△ADM和Rt△BCN全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△DCE和△BCE全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AFD=90°,取AD的中点O,连接OF、OC,根据直角三角形斜边上的中线等于斜边的一半可得OF=12AD=1,利用勾股定理列式求出OC,然后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.【解答】解:在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,AD=BCAM=BN,∴Rt△ADM≌Rt△BCN(HL),∴∠1=∠2,在△DCE和△BCE中,BC=CD∠DCE=∠BCECE=CE,∴△DCE≌△BCE(SAS),∴∠2=∠3,∴∠1=∠3,∵∠ADF+∠3=∠ADC=90°,∴∠1+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,则OF=DO=12AD=1,在Rt△ODC中,OC=DO2+DC2=12+22=5,根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=5−1.故选:C.7.(2022•龙华区二模)如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为13−2.其中正确的有(  )A.1个 B.2个 C.3个 D.4个【分析】连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的判定和性质即可得到PE=PC;故②正确;连接EF,推出点E、P、F、C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且EPCF四点共圆,EC=FC=3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE 的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO=12AE,推出点P在以O为圆心,AE为直径的圆上,当OC最小时,CP的值最小,根据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.【解答】解:连接AE,过E作EH⊥AB于H,则EH=BC,∵AB=BC,∴EH=AB,∵EG⊥AF,∴∠BAF+∠AGP=∠BAF+∠AFB=90°,∴∠EGH=∠AFB,∵∠B=∠EHG=90°,∴△HEG≌△ABF(AAS),∴AF=EG,故①正确;∵AB∥CD,∴∠AGE=∠CEG,∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,∵∠BAF=∠PCF,∴∠AGE=∠PCE,∴∠PEC=∠PCE,∴PE=PC;故②正确;连接EF,∵∠EPF=∠FCE=90°,∴点E、P、F、C四点共圆,∴∠FEC=∠FPC=45°,∴EC=FC,∴BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且E、P、C、F四点共圆,EC=FC=3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE 的中点O,连接PO,CO,∴AO=PO=12AE,∵∠APE=90°,∴点P在以O为圆心,AE为直径的圆上,∴当OC最小时,CP的值最小,∵PC≥OC﹣OP,∴PC的最小值=OC﹣OP=OC−12AE,∵OC=22+(72)2=652,在Rt△ADE中,AE=42+12=17,∴PC的最小值为652−172,故④错误,故选:B.8.(2022•南平校级自主招生)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为(  )A.4 B.4.8 C.5.2 D.6【分析】先由矩形的判定定理推知四边形PEAF是矩形;连接PA,则PA=EF,所以要使EF,即PA最短,只需PA⊥CB即可;然后根据三角形的等积转换即可求得PA的值.【解答】解:如图,连接PA.∵在△ABC中,AB=6,AC=8,BC=10,∴BC2=AB2+AC2,∴∠A=90°.又∵PE⊥AB于点E,PF⊥AC于点F.∴∠AEP=∠AFP=90°,∴四边形PEAF是矩形.∴AP=EF.∴当PA最小时,EF也最小,即当AP⊥CB时,PA最小,∵12AB•AC=12BC•AP,即AP=AB⋅ACBC=6×810=4.8,∴线段EF长的最小值为4.8;故选:B.9.(2022春•崇川区期末)如图,正方形ABCD边长为1,点E,F分别是边BC,CD上的两个动点,且BE=CF,连接BF,DE,则BF+DE的最小值为(  )A.2 B.3 C.5 D.6【分析】连接AE,利用△ABE≌△BCF转化线段BF得到BF+DE=AE+DE,则通过作A点关于BC对称点H,连接DH交BC于E点,利用勾股定理求出DH长即可.【解答】解:连接AE,如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作点A关于BC的对称点H点,如图2,连接BH,则A、B、H三点共线,连接DH,DH与BC的交点即为所求的E点.根据对称性可知AE=HE,所以AE+DE=DH.在Rt△ADH中,AD=1,AH=2,∴DH=AH2+AD2=5,∴BF+DE最小值为5.故选:C.10.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为(  )A.2 B.2 C.22 D.4【分析】连接AE,那么,AE=CG,所以这三个d的和就是AE+EF+FC,所以大于等于AC,故当AEFC四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=2AB=22,∴d1+d2+d3最小=AC=22,故选:C.二.填空题(共10小题)11.(2022春•江城区期末)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=6,BC=2.运动过程中点D到点O的最大距离是  3+13 .【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=12AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.【解答】解:如图:取线段AB的中点E,连接OE,DE,OD,∵AB=6,点E是AB的中点,∠AOB=90°,∴AE=BE=3=OE,∵四边形ABCD是矩形,∴AD=BC=2,∠DAB=90°,∴DE=AE2+AD2=13,∵OD≤OE+DE,∴当点D,点E,点O共线时,OD的长度最大.∴点D到点O的最大距离=OE+DE=3+13,故答案为:3+13.12.(2022•东莞市校级一模)如图,在矩形ABCD中,AB=6,AD=5,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+DQ的最小值为  13 .【分析】连接BP,在BA的延长线上截取AE=AB=6,连接PE,CE,PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=6,则PC+QD=PC+PB=PC+PE≥CE,根据勾股定理可得结果.【解答】解:如图,连接BP,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,∴PC+QD=PC+PB,∴PC+QD的最小值转化为PC+PB的最小值,如图,在BA的延长线上截取AE=AB=6,连接PE,CE,∵PA⊥BE,∴PA是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,∴PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,BC=AD=5,∴CE=BE2+BC2=13.∴PC+PB的最小值为13.∴PC+DQ的最小值为13.故答案为:13.13.(2022•钱塘区一模)如图,在矩形ABCD中,线段EF在AB边上,以EF为边在矩形ABCD内部作正方形EFGH,连结AH,CG.若AB=10,AD=6,EF=4,则AH+CG的最小值为  62 .【分析】方法一:延长DA至A′,使A′A=EH=EF=4,连接A′E,EG,可得四边形AA′EH是平行四边形,所以A′E=AH,则AH+CG的最小值即为A′E+CG的最小值,根据勾股定理即可解决问题.方法二:过点G作GA′∥AH交AF于点A′,可得四边形AHGA′是平行四边形,进而可以解决问题.【解答】解:方法一:如图,延长DA至A′,使A′A=EH=EF=4,连接A′E,EG,∵HE⊥AB,AA′⊥AB,∴AA′∥EH,∵A′A=EH,∴四边形AA′EH是平行四边形,∴A′E=AH,则AH+CG的最小值即为A′E+CG的最小值,∵四边形EFGH是正方形,∴EF=FG=4,∴EG=42,∵A′D=AD+AA′=6+4=10,在Rt△A′DC中,DC=AB=10,∴A′C=A'D2+DC2=102,∴A′E+CG=A′C﹣EG=62.则AH+CG的最小值为62.方法二:如图,过点G作GA′∥AH交AF于点A′,∴四边形AHGA′是平行四边形,∴AA′=HG=4,A′G=AH,∴A′B=AB﹣AA′=6,∵BC=6,∴A′C=62,∴AH+CG=A′G+CG≥A′C,则AH+CG的最小值为62.故答案为:62.14.(2022春•东城区期中)在正方形ABCD中,AB=5,点E、F分别为AD、AB上一点,且AE=AF,连接BE、CF,则BE+CF的最小值是  55 .【分析】连接DF,根据正方形的性质证明△ADF≌△ABE(SAS),可得DF=BE,作点D关于AB的对称点D′,连接CD′交AB于点F′,连接D′F,则DF=D′F,可得BE+CF=DF+CF=D′F+CF≥CD′,所以当点F与点F′重合时,D′F+CF最小,最小值为CD′的长,然后根据勾股定理即可解决问题.【解答】解:如图,连接DF,∵四边形ABCD是正方形,∴AD=AB,∠BAE=∠DAF=90°,在△ADF和△ABE中,AD=AB∠FAD=∠EABAF=AE,∴△ADF≌△ABE(SAS),∴DF=BE,作点D关于AB的对称点D′,连接CD′交AB于点F′,连接D′F,则DF=D′F,∴BE+CF=DF+CF=D′F+CF≥CD′,∴当点F与点F′重合时,D′F+CF最小,最小值为CD′的长,在Rt△CDD′中,根据勾股定理得:CD′=CD2+DD'2=52+102=55,∴BE+CF的最小值是55.故答案为:55.15.(2022春•虎林市期末)如图,在Rt△ABC中,∠BAC=90°,且BA=12,AC=16,点D是斜边BC上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为  245 .【分析】由勾股定理求出BC的长,再证明四边形DEAF是矩形,可得EF=AD,根据垂线段最短和三角形面积即可解决问题.【解答】解:连接AD、EF,∵∠BAC=90°,且BA=9,AC=12,∴BC=AB2+AC2=122+162=20,∵DE⊥AB,DF⊥AC,∴∠DEA=∠DFA=∠BAC=90°,∴四边形DEAF是矩形,∴EF=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=12AB×AC=12BC×AD,∴12×16=20AD,∴AD=485∴EF的最小值为485,∵点G为四边形DEAF对角线交点,∴GF=12EF=245;故答案为:245.16.(2022•灞桥区校级三模)在菱形ABCD中,∠D=60°,CD=4,E为菱形内部一点,且AE=2,连接CE,点F为CE中点,连接BF,取BF中点G,连接AG,则AG的最大值为  12+7 .【分析】先根据题目条件中的中点可联想中位线的性质,构造中位线将OF和GH的长度先求出来,再利用三角形的三边关系判断,当AG=AH+HG时最大.【解答】解:如图所示:连接BD交AC于点O,连接FO,取OB的中点H,连接HG和AH,∵在菱形ABCD中,∴O为AC中点,∵F为CE中点,∴OF=12AE=1,当C、F、E、A共线时,OF也为1,∵G为BF中点、H为OB中点,∴GH=12OF=12,∵在菱形ABCD中且∠D=60°,∴∠ABO=12∠ABC=12∠ADC=30°,∠BOA=90°,∴OA=12AB=2,∴OB=42−22=23,∴OH=3,∴AH=22+(3)2=7,∵AG≤AH+HG,∴AG≤12+7,∴AG的最大值为12+7.故答案为:12+7.17.(2022春•靖江市校级期末)如图,线段AB的长为10,点D在AB上,△ACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH的对角线交点为O,连接OB,则线段BO的最小值为  5 .【分析】连接AO,根据矩形对角线相等且互相平分得:OC=OD,再证明△ACO≌△ADO,则∠OAB=30°;点O一定在∠CAB的平分线上运动,根据垂线段最短得:当OB⊥AO时,OB的长最小,根据直角三角形30°角所对的直角边是斜边的一半得出结论.【解答】解:连接AO,∵四边形CDGH是矩形,∴CG=DH,OC=12CG,OD=12DH,∴OC=OD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,在△ACO和△ADO中,AC=ADAO=AOCO=DO,∴△ACO≌△ADO(SSS),∴∠OAB=∠CAO=30°,∴点O一定在∠CAB的平分线上运动,∴当OB⊥AO时,OB的长度最小,∵∠OAB=30°,∠AOB=90°,∴OB=12AB=12×10=5,即OB的最小值为5.故答案为:5.18.(2022春•郫都区期末)如图,在矩形ABCD中,AB=4,AD=8,点E是BC边上一动点,作点B关于AE的对称点F,连接CF,点P为CF中点,则DP的最小值为  25−2 .【分析】根据勾股定理和三角形中位线,可以得到OP的长和OD的长,然后再根据图形可知当点P在线段OD上时,DP取得最小值,然后计算即可.【解答】解:连接AC、BD交于点O,连接AF,OP,∵四边形ABCD是矩形,∠BAD=90°,AB=4,AD=8,∴点O为AC的中点,BD=AB2+AD2=45,又∵点P是CF的中点,∴OP是△CAF的中位线,∵点B关于AE的对称点F,AB=4,∴AF=4,∴OP=2,∵BD=45,∴OD=25,∵OP+DP>OD,OP=2,OD=25,∴当点P在OD上时,DP取得最小值,此时DP=OD﹣OP=25−2,故答案为:25−2.19.(2022春•江都区期中)如图,矩形ABCD中,AB=4,AD=23,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是  23 .【分析】取DE中点P′,取DC中点P″,根据中位线定理可得出点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值,由勾股定理求解即可.【解答】解:如图:取DE中点P′,∵P为DF中点,∴P′P∥EC,取DC中点P″,∵P为DF中点,∴P″P∥EC,∴P,P′,P″三点在同一条直线上,∴点P的运动轨迹是线段P′P″,∴当BP⊥P′P″时,PB取得最小值.过点B作BG⊥EC于点G,过P″作P″M⊥EC于点M,∴PB的最小值=BG+P″M,∵矩形ABCD中,AB=4,E为AB的中点,∴AE=BE=2,∵BC=AD=23,∴DE=CE=22+(23)2=4,∵AB=CD=4,∴△EDC是等边三角形,∴∠P″CM=60°,∵CP″=2,∴CM=1,∴P″M=3,∵ED=EC,AE=BE,AD=BC,∴△CBE≌△ADE(SSS),∴∠DEA=∠CEB,∵∠DEC=60°.∴∠BEG=60°.∵BE=2,∴BP=P″M+BG=23,∴PB的最小值是23.故答案是:23.20.(2022春•如东县期中)如图,已知AB=22,C为线段AB上的一个动点,分别以AC,CB为边在AB的同侧作菱形ACED和菱形CBGF,点C,E,F在一条直线上,∠D=120°.P、Q分别是对角线AE,BF的中点,当点C在线段AB上移动时,点P,Q之间的距离最短为 62 (结果保留根号).【分析】连接QC、PC.首先证明∠PCQ=90°,设AC=2a,则BC=22−2a,PC=a,CQ=3(2−a).构建二次函数,利用二次函数的性质即可解决问题.【解答】解:连接PC、CQ.∵四边形ACED,四边形CBGF是菱形,∠D=120°,∴∠ACE=120°,∠FCB=60°,∵P,Q分别是对角线AE,BF的中点,∴∠ECP=12∠ACE,∠FCQ=12∠BCF,∴∠PCQ=90°,设AC=2a,则BC=22−2a,PC=a,CQ=32BC=3(2−a).∴PQ=PC2+QC2=a2+3(2−a)2=4(a−324)2+32.∴当a=324时,点P,Q之间的距离最短,最短距离是62.解法二:连接CD、CG、DG,构造中位线解决,当DG与AD或BG垂直时,取最值.故答案为:62.三.解答题(共10小题)21.(2022•禹城市二模)(1)如图①,已知正方形ABCD的边长为4,点M和N分别是边BC,CD上两点,且BM=CN,连AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动,连接AM和BN,交于点P.求△APB周长的最大值.【分析】(1)结论:AM⊥BN.只要证明△ABM≌△BCN即可解决问题;(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于F,作EG⊥PB于G,连接EP.首先证明PA+PB=2EF,求出EF的最大值即可解决问题;【解答】解:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于F,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=22,∴△APB周长的最大值=4+42.22.(2022春•东坡区校级月考)正方形ABCD中,E、F是AD上的两个点,AE=DF,连CF交BD于点M,连AM交BE于点N,连接DN.如果正方形的边长为2.(1)求证:BE⊥AM;(2)求DN的最小值.【分析】正方形的性质:正方形的四边相等,正方形的对角线平分对角,直角三角形斜边的中线等于斜边的一半;两点之间,线段最短;三角形全等的判定和全等三角形的性质.欲证BE⊥AM,只需证明△ABN为Rt△,也就等价于∠ABE=∠DAM,易知∠ABE=∠DCF,于是只需证明∠DCF=∠DAM.过了这一关,求极值的问题也就非常简单了.【解答】(1)证:∵四边形ABCD为正方形,∴AB=DC,∠BAE=∠CDF=90°,又AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF,∵BD是正方形ABCD的对角线,∴∠CDM=∠ADM,∴△ADM≌△CDM∴∠DCM=∠DAM,∴∠ABE=∠DAM,∴∠ABE+∠BAM=∠DAM+BAM=90°,∴∠ANB=90°,则BE⊥AM;(2)解:取AB中点P,连PN、PD,由(1)知:△ABN、△APD均为直角三角形,∴PN=12AB=1,PD=AD2+AP2=5,∴DN≥PD﹣PN=5−1,则DN的最小值为5−1.23.(2022•黄埔区模拟)如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.(1)试探究BE与BF的数量关系,并证明你的结论;(2)求EF的最大值与最小值.【分析】(1)由在边长为4的菱形ABCD中,BD=4,易得△ABD、△CBD都是边长为4的正三角形,继而证得△BDE≌△BCF(SAS),则可证得结论;(2)由△BDE≌△BCF,易证得△BEF是正三角形,继而可得当动点E运动到点D或点A时,BE的最大,当BE⊥AD,即E为AD的中点时,BE的最小.【解答】解:(1)BE=BF,证明如下:∵四边形ABCD是边长为4的菱形,BD=4,∴△ABD、△CBD都是边长为4的正三角形,∵AE+CF=4,∴CF=4﹣AE=AD﹣AE=DE,又∵BD=BC=4,∠BDE=∠C=60°,在△BDE和△BCF中,DE=CF∠BDE=∠CBD=BC,∴△BDE≌△BCF(SAS),∴BE=BF;(2)∵△BDE≌△BCF,∴∠EBD=∠FBC,∴∠EBD+∠DBF=∠FBC+∠DBF,∴∠EBF=∠DBC=60°,又∵BE=BF,∴△BEF是正三角形,∴EF=BE=BF,当动点E运动到点D或点A时,BE的最大值为4,当BE⊥AD,即E为AD的中点时,BE的最小值为23,∵EF=BE,∴EF的最大值为4,最小值为23.24.(2022春•洪山区期中)如图1,E,F是正方形ABCD的边上两个动点,满足AE=DF,连接CF交BD于G,连接BE交AG于点H(1)求证:AG⊥BE;(2)如图2,连DH,若正方形的边长为4,则线段DH长度的最小值是 25−2 .【分析】(1)根据正方形的性质可得AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠ABE=∠DCF,再利用“边角边”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠DAG=∠DCF,从而得到∠ABE=∠DAG,再根据∠DAG+∠BAH=90°求出∠BAE+∠BAH=90°,然后求出∠AHB=90°,再根据垂直的定义证明;(2)取AB的中点O,连接OD、OH,利用勾股定理列式求出OD,根据直角三角形斜边上的中线等于斜边的一半求出OH,再根据三角形的任意两边之差小于第三边判断出O、D、H三点共线时,DH最小.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,AB=CD∠BAD=∠ADCAE=DF,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,AD=CD∠ADB=∠CDBDG=DG,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE;(2)取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=12×4=2,由勾股定理得,OD=42+22=25,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=25−2.故答案为:25−2.25.(2022•宁德)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为3+1时,求正方形的边长.【分析】(1)由题意得MB=NB,∠ABN=15°,所以∠EBN=45°,容易证出△AMB≌△ENB;(2)①根据“两点之间线段最短”,可得,当M点落在BD的中点时,AM+CM的值最小;②根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长(如图);(3)作辅助线,过E点作EF⊥BC交CB的延长线于F,由题意求出∠EBF=30°,设正方形的边长为x,在Rt△EFC中,根据勾股定理求得正方形的边长为2.【解答】(1)证明:∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN﹣∠ABN=∠ABE﹣∠ABN.即∠MBA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS).(2)解:①当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小.②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,理由如下:连接MN,由(1)知,△AMB≌△ENB,∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”可知,若E、N、M、C在同一条直线上时,EN+MN+CM取得最小值,最小值为EC.在△ABM和△CBM中,AB=CB∠ABM=∠CBMBM=BM,∴△ABM≌△CBM(SAS),∴∠BAM=∠BCM,∴∠BCM=∠BEN,∵EB=CB,∴若连接EC,则∠BEC=∠BCE,∵∠BCM=∠BCE,∠BEN=∠BEC,∴M、N可以同时在直线EC上.∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.(3)解:过E点作EF⊥BC交CB的延长线于F,∴∠EBF=∠ABF﹣∠ABE=90°﹣60°=30°.设正方形的边长为x,则BF=32x,EF=x2.在Rt△EFC中,∵EF2+FC2=EC2,∴(x2)2+(32x+x)2=(3+1)2.解得x1=2,x2=−2(舍去负值).∴正方形的边长为2.26.(2022•南充模拟)如图,M,N是正方形ABCD的边CD上的两个动点,满足CM=DN,AC,BM相交于点E,DE与AN相交于点F,连接CF.(1)求证:DE⊥AN.(2)若正方形ABCD的边长为4,求CF的最小值.【分析】(1)根据正方形的性质证明△BCM≌△ADN和△BCE≌△DCE,得到∠CDE=∠NAD,因此∠DAN+∠ADF=∠CDE+∠ADF=90°,进而求证;(2)取AD中点P,连接PF,CP,根据直角三角形斜边上的中线等于斜边的一半求出FP的长度,根据勾股定理求出CP的长度,根据CF+FP≥CP,即可求得.【解答】(1)证明:∵四边形ABCD是正方形,∴∠BCA=∠DCE=45°,BC=AD=CD,∠BCD=∠ADC=90°,在△BCM和△ADN中,BC=AD∠BCD=∠ADC=90°CM=DN,∴△BCM≌△ADN(SAS).∴∠CBM=∠DAN,在△BCE和△DCE中,BC=CD∠BCA=∠ACD=45°CE=CE,∴△BCE≌△DCE(SAS),∴∠CBM=∠CDE,∴∠CDE=∠NAD,∴∠DAN+∠ADF=∠CDE+∠ADF=90°,∴DE⊥AN.(2)解:取AD中点P,连接PF,CP,由(1),得FP=12AD=2,在Rt△CPD中,由勾股定理得,CP=42+22=25,∵CF+FP≥CP,∴CF≥25−2,∴CF的最小值25−2.27.(2022春•思明区校级期中)已知:在矩形ABCD中,AB=8,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD的边AB、BC、DA上.(1)如图1,四边形EFGH为正方形,AE=2,求GC的长.(2)如图2,四边形EFGH为菱形,设BF=x,△GFC的面积为S,且S与x满足函数关系S=6−12x.在自变量x的取值范围内,是否存在x,使菱形EFGH的面积最大?若存在,求x的值,若不存在,请说明理由.【分析】(1)只要证明△AEH≌△BFE.推出BF=AE=2,由△MGF≌△BFE,求出CM和MG的长,根据勾股定理可得结论;(2)如图2,过点G作GM⊥BC,垂足为M,连接HF,根据S△GFC=12FC•GM,计算GM的长,先根据勾股定理确定菱形边长的最大值,即确定x的取值范围,计算菱形的面积,可得菱形面积最大值时,x也是最大值即可.【解答】解:(1)如图1,过点G作GM⊥BC,垂足为M.由矩形ABCD可知:∠A=∠B=90°,由正方形EFGH可知:∠HEF=90°,EH=EF,∴∠1+∠2=90°,又∠1+∠3=90°,∴∠3=∠2,∴△AEH≌△BFE.∴BF=AE=2,同理可证:△MGF≌△BFE,∴GM=BF=2,FM=BE=8﹣2=6,∴CM=BC﹣BF﹣FM=12﹣2﹣6=4,在Rt△CMG中,由勾股定理得:CG=CM2+MG2=22+42=25;(2)如图2,过点G作GM⊥BC,垂足为M,连接HF,由矩形ABCD得:AD∥BC,∴∠AHF=∠HFM,由菱形EFGH得:EH∥FG,EH=FG,∴∠EHF=∠HFM,∴∠AHE=∠GFM,又∠A=∠M=90°,EH=FG,∴△MGF≌△AEH,∴GM=AE,又 BF=x,∴FC=12﹣x,∴S△GFC=12FC•GM=12(12﹣x)•GM=6−12x,∴GM=1,∴AE=GM=1,BE=8﹣1=7,∵H在边AD上,∴菱形边长EH的最大值=122+12=145,即EH=EF=145,此时BF=x=145−(8−1)2=96=46,∴0≤x≤46,∵EH=EF,由勾股定理得:AH=EH2−12=72+x2−1=48+x2,∴S菱形EFGH=BM•AB﹣2×12×7x﹣2×12×1×48+x2=8(x+FM)﹣7x﹣FM=x+748+x2,∴当x最大时,菱形EFGH的面积最大,即当x=46时,菱形EFGH的面积最大.28.(2022•南岗区校级一模)已知菱形ABCD的对角线相交于O,点E、F分别在边AB、BC上,且BE=BF,射线EO、FO分别交边CD、AD于G、H.(1)求证:四边形EFGH为矩形;(2)若OA=4,OB=3,求EG的最小值.【分析】(1)先根据对角线互相平分证明四边形EFGH是平行四边形,再证明△EBO≌△FBO,得EG=FH,所以四边形EFGH是矩形;(2)根据垂线段最短,可知:当OE⊥AB时,OE最小,先利用面积法求OE的长,EG=2OE,可得结论.【解答】证明:(1)∵四边形ABCD是菱形,∴OA=OC,OB=OD,AB∥CD,AD∥BC,∴∠BAO=∠DCO,∠AOE=∠GOC,∴△AOE≌△COG(ASA),∴OE=OG,同理得:OH=OF,∴四边形EFGH是平行四边形,∵BE=BF,∠ABD=∠CBD,OB=OB,∴△EBO≌△FBO,∴OE=OF,∴EG=FH,∴四边形EFGH是矩形;(2)∵垂线段最短,∴当OE⊥AB时,OE最小,∵OA=4,OB=3,∠AOB=90°,∴AB2=OA2+OB2=25,∴AB=5,∴12OA×OB=12AB×OE,3×4=5×OE,OE=125,∵OE=OG,∴EG=245.答:EG的最小值是245.29.(2022春•戚墅堰区校级月考)如图,已知∠MON=90°,线段AB长为6cm,AB两端分别在OM、ON上滑动,以AB为边作正方形ABCD,对角线AC、BD相交于点P,连接OC.(1)求OC的最大值;(2)求证:无论点A、点B怎样运动,点P都在∠AOB的平分线上;(3)若OP=42cm,求OA的长.【分析】(1)当连接OQ,CQ,当O,C,Q三点共线时,OC有最大值,由正方形的性质和勾股定理得出答案即可;(2)作PE⊥OM、PF⊥ON,证得△PAE≌△PBF,得出PE=PF,得出结论;(3)由(2)的结论,利用OA=OE+AE,求出AE、OE解决问题.【解答】(1)解:取AB的中点Q,连接OQ,CQ,当O,C,Q三点共线时,OC有最大值,最大值为:OQ+QC=12×6+62+32=(3+35)cm,(2)作PE⊥OM、PF⊥ON垂足分别为E、F,∠PEA=∠PFB=90°,∵ABCD是正方形,∴PA=PB,∵∠AOB=∠ABC=90°,∴∠CBN=∠OAB,∠PBC=∠PAB=45°,∴CNB+∠POC=∠PAB+∠OAB,即∠PAE=∠PBF,∴△PAE≌△PBF,∴PE=PF,即P在角AOB的平分线上;(3)四边形OEPF是正方形,OP=42cm,OE=PE=22OP=4cm,AB=6cm,PA=32cmAE=PA2−PE2=2cm,∴OA=OE+AE=4+2或OA=(4−2)cm.30.(2012秋•吴中区月考)如图①,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)连接MN,△BMN是等边三角形吗?为什么?(2)求证:△AMB≌△ENB;(3)①当M点在何处时,AM+CM的值最小;②如图②,当M点在何处时,AM+BM+CM的值最小,请你画出图形,并说明理由.【分析】(1)根据旋转的性质可得BM=BN,∠MBN=60°,再根据有一个角是60°的等腰三角形是等边三角形证明即可;(2)根据等边三角形的性质可得AB=EB,BM=BN,∠ABE=∠MBN=60°,再求出∠ABM=∠EBN,然后利用“边角边”证明△AMB和△ENB全等即可;(3)①根据两点之间线段最短可知A、M、C三点共线时,AM+CM的值最小,再根据正方形的性质解答;

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map