所属成套资源:高考数学第一轮复习导学案(新高考)(原卷版+解析)
高考数学第一轮复习导学案(新高考)第30讲y=sin(ωx+φ)的图象与性质(原卷版+解析)
展开
这是一份高考数学第一轮复习导学案(新高考)第30讲y=sin(ωx+φ)的图象与性质(原卷版+解析),共33页。试卷主要包含了 y=Asin的有关概念,与三角函数奇偶性相关的结论等内容,欢迎下载使用。
1、 y=Asin(ωx+φ)的有关概念
2、用五点法画y=Asin(ωx+φ)(A>0,ω>0,x∈R)一个周期内的简图时,要找五个特征点
如下表所示:
3、 函数y=sinx的图象经变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象的步骤如下:
4、与三角函数奇偶性相关的结论
三角函数中,判断奇偶性的前提是定义域关于原点对称,奇函数一般可化为y=Asin ωx或y=Atan ωx的形式,而偶函数一般可化为y=Acs ωx+b的形式.常见的结论有:
(1)若y=Asin(ωx+φ)为偶函数,则有φ=kπ+eq \f(π,2)(k∈Z);若为奇函数,则有φ=kπ(k∈Z).
(2)若y=Acs(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+eq \f(π,2)(k∈Z).
(3)若y=Atan(ωx+φ)为奇函数,则有φ=kπ(k∈Z).
1、(2023年普通高等学校招生全国统一考试(全国甲卷)) 函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为( )
A. 1B. 2C. 3D. 4
2、 (2023年普通高等学校招生全国统一考试(全国乙卷))已知函数在区间单调递增,直线和为函数的图象的两条对称轴,则( )
A. B. C. D.
3、【2022年全国甲卷】将函数f(x)=sinωx+π3(ω>0)的图象向左平移π2个单位长度后得到曲线C,若C关于y轴对称,则ω的最小值是( )
A.16B.14C.13D.12
4、【2022年全国甲卷】设函数f(x)=sinωx+π3在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )
A.53,136B.53,196C.136,83D.136,196
5、【2022年新高考1卷】记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π30,|φ|< eq \f(π,2))的部分图象如图所示,则φ的值为 .
变式2、(2022·江苏海安·高三期末)函数的部分图象如图,则下列选项中是其一条对称轴的是( )
A.B.
C.D.
变式3、(2022年湖南张家界市模拟试卷)记函数的最小正周期为T,若,且是图象的一个最高点,则( )
A. B. C. D.
方法总结:确定y=Asin(ωx+φ)+B(A>0,ω>0)的解析式的步骤
(1)求A,B,确定函数的最大值M和最小值m,则A=eq \f(M-m,2),B=eq \f(M+m,2).
(2)求ω,确定函数的周期T,则ω=eq \f(2π,T).
(3)求φ,常用方法有以下2种:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;确定φ值时,往往以寻找“五点法”中的特殊点作为突破口
考向二 函数y=Asin(ωx+φ)的图象及其变换
例2、某同学用“五点法”画函数f(x)=A sin (ωx+φ) eq \b\lc\(\rc\)(\a\vs4\al\c1(ω>0,|φ|0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为 eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,12),0)),求θ的最小值.
变式1、(2022年福建永泰县高三模拟试卷)(多选题)要得到的图象,只要将图象怎样变化得到
A. 将的图象沿x轴方向向左平移个单位
B. 将的图象沿x轴方向向右平移个单位
C. 先作关于x轴对称图象,再将图象沿x轴方向向右平移个单位
D. 先作关于x轴对称图象,再将图象沿x轴方向向左平移个单位
变式2、(2022·河北唐山·高三期末)为了得到函数的图象,只需把函数的图象( )
A.向左平移个单位B.向右平移个单位
C.向左平移个单位D.向右移个单位
变式3、 (2022年福建龙岩市模拟试卷)把函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图象,则( )
A. B.
C. D.
变式4、(2022·山东莱西·高三期末)要得到的图象,只需将的图象( )
A.向左平行移动个单位长度B.向右平行移动个单位长度
C.向右平行移动个单位长度D.向左平行移动个单位长度
方法总结:1.y=Asin(ωx+φ)的图象可用“五点法”作简图得到,可通过变量代换z=ωx+φ计算五点坐标.
2.由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)图象有两条途径:“先平移后伸缩”与“先伸缩后平移”.
考向三 三角函数图象与性质的综合问题
例3、(2022·江苏扬州·高三期末)已知函数(ω>0),下列说法中正确的有( )
A.若ω=1,则f(x)在上是单调增函数
B.若,则正整数ω的最小值为2
C.若ω=2,则把函数y=f(x)的图象向右平移个单位长度,所得到的图象关于原点对称
D.若f(x)在上有且仅有3个零点,则
变式1、(2022·江苏通州·高三期末)(多选题)已知函数 (A>0,0<φ<π)的图象如图所示,则( )
A.
B.是偶函数
C.当时,f(x)的最大值为1
D.若,则的最小值为π
变式2、(2022·江苏宿迁·高三期末)(多选题)将函数的图象向左平移个单位长度后得到的图象如图,则( )
A.为奇函数
B.在区间上单调递增
C.方程在内有个实数根
D.的解析式可以是
变式3、(2022·广东汕尾·高三期末)(多选题)以下关于函数的命题,正确的是( )
A.函数的最小正周期为
B.点是函数图象的一个对称中心
C.直线的函数图象的一条对称轴
D.将函数的图象向右平移个单位后得到的函数的图象关于原点对称
方法总结:三角函数性质的综合问题:主要考查单调性、奇偶性、对称性、周期性及性质的应用.
函数零点(方程根)问题:三角函数图象与x轴(或y=a)的交点,即数形之间的转化问题.
1、(2022年厦门双十中学模拟试卷)将图象上每一个点的横坐标变为原来的3倍(纵坐标不变),得到的图象,再将图象向左平移,得到的图象,则的解析式为( )
A. B. C. D.
2、(2022·广东佛山·高三期末)已知函数在一个周期内的图象如图所示,图中,,则___________.
3、(2022·山东枣庄·高三期末)若的部分图象如图所示,则的值为________.
4、(2022·广东潮州·高三期末)(多选题)已知函数,则( )
A.对任意正奇数n,f(x)为奇函数
B.当n=3时,f(x)在[0,]上的最小值为
C.当n=4时,f(x)的单调递增区间是
D.对任意正整数n,f(x)的图象都关于直线对称
5、(2022·广东东莞·高三期末)(多选题)已知函数,若且对任意都有,则下列结论正确的是( )
A.
B.
C.的图象向左平移个单位后,图象关于原点对称
D.的图象向右平移个单位后,图象关于轴对称
6、(2022·山东泰安·高三期末)已知函数,将的图象向左平移个单位长度,所得函数的图象关于轴对称.
(1)求函数的解析式;
(2)若关于的方程在上恰有两个实数根,求实数的取值范围.
第30讲 y=sin(ωx+φ)的图象与性质
1、 y=Asin(ωx+φ)的有关概念
2、用五点法画y=Asin(ωx+φ)(A>0,ω>0,x∈R)一个周期内的简图时,要找五个特征点
如下表所示:
3、 函数y=sinx的图象经变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象的步骤如下:
4、与三角函数奇偶性相关的结论
三角函数中,判断奇偶性的前提是定义域关于原点对称,奇函数一般可化为y=Asin ωx或y=Atan ωx的形式,而偶函数一般可化为y=Acs ωx+b的形式.常见的结论有:
(1)若y=Asin(ωx+φ)为偶函数,则有φ=kπ+eq \f(π,2)(k∈Z);若为奇函数,则有φ=kπ(k∈Z).
(2)若y=Acs(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+eq \f(π,2)(k∈Z).
(3)若y=Atan(ωx+φ)为奇函数,则有φ=kπ(k∈Z).
1、(2023年普通高等学校招生全国统一考试(全国甲卷)) 函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
因为向左平移个单位所得函数为,所以,
而显然过与两点,
作出与的部分大致图象如下,
考虑,即处与的大小关系,
当时,,;
当时,,;
当时,,;
所以由图可知,与的交点个数为.
故选:C.
2、 (2023年普通高等学校招生全国统一考试(全国乙卷))已知函数在区间单调递增,直线和为函数的图象的两条对称轴,则( )
A. B. C. D.
【答案】D
【解析】
因为在区间单调递增,
所以,且,则,,
当时,取得最小值,则,,
则,,不妨取,则,
则
3、【2022年全国甲卷】将函数f(x)=sinωx+π3(ω>0)的图象向左平移π2个单位长度后得到曲线C,若C关于y轴对称,则ω的最小值是( )
A.16B.14C.13D.12
【答案】C
【解析】
由题意知:曲线C为y=sinωx+π2+π3=sin(ωx+ωπ2+π3),又C关于y轴对称,则ωπ2+π3=π2+kπ,k∈Z,
解得ω=13+2k,k∈Z,又ω>0,故当k=0时,ω的最小值为13.
故选:C.
4、【2022年全国甲卷】设函数f(x)=sinωx+π3在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )
A.53,136B.53,196C.136,83D.136,196
【答案】C
【解析】
解:依题意可得ω>0,因为x∈0,π,所以ωx+π3∈π3,ωπ+π3,
要使函数在区间0,π恰有三个极值点、两个零点,又y=sinx,x∈π3,3π的图象如下所示:
则5π2
相关试卷
这是一份高考数学一轮复习精品导学案(新高考)第30讲y=sin(ωx+φ)的图象与性质(原卷版+解析),共33页。试卷主要包含了 y=Asin的有关概念,与三角函数奇偶性相关的结论等内容,欢迎下载使用。
这是一份高考数学高频考点题型归纳与方法(新高考通用)第21讲函数y=Asin(ωx+φ)的图象性质及其应用(精讲)(原卷版+解析),共79页。试卷主要包含了知识点梳理,题型分类精讲,填空题,解答题等内容,欢迎下载使用。
这是一份新高考数学一轮复习导学案第30讲 y=sin(ωx+φ)的图象与性质(2份打包,原卷版+解析版),文件包含新高考一轮复习导学案第30讲ysinωx+φ的图象与性质原卷版doc、新高考一轮复习导学案第30讲ysinωx+φ的图象与性质解析版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。