2024-2025学年广东省华师附中实验学校九年级数学第一学期开学检测试题【含答案】
展开
这是一份2024-2025学年广东省华师附中实验学校九年级数学第一学期开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于一次函数,下列结论正确的是( )
A.随的增大而减小B.图象经过点(2,1)C.当﹥时,﹥0D.图象不经过第四象限
2、(4分)若甲、乙两人同时从某地出发,沿着同一个方向行走到同一个目的地,其中甲一半的路程以a(km/h)的速度行走,另一半的路程以b(km/h)的速度行走;乙一半的时间以a(km/h)的速度行走,另一半的时间以b(km/h)的速度行走(a≠b),则先到达目的地的是( )
A.甲B.乙
C.同时到达D.无法确定
3、(4分)一次函数的图像不经过第四象限,那么的取值范围是( )
A.B.C.D.
4、(4分)如图,过点作轴的垂线,交直线于,在轴上取点,使,过点作轴的垂线,交直线于,在轴上取点,使,过点作轴的垂线,交直线于,···,这样依次作图,则点的纵坐标为( )
A.B.C.D.
5、(4分)如图,正方形纸片ABCD的边长为4 cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是( )
\
A.2 cmB.4 cmC. cmD.1 cm
6、(4分)将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )
A.3,5,6B.2,3,5C.5,6,7D.6,8,10
7、(4分)的计算结果是( )
A.3B.9C.6D.2
8、(4分)由线段a、b、c组成的三角形不是直角三角形的是
A.,,B.,,
C.,,D.,,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某超市促销活动,将三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装三种水果;乙种方式每盒分别装三种水果 .甲每盒的总成本是每千克 水果成本的倍,每盒甲的销售利润率为;每盒甲比每盒乙的售价低;每盒丙在成本上提高标价后打八折出售,获利为每千克 水果成本的倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为时,则销售总利润率为__________.
10、(4分)五子棋的比赛规则是:一人执黑子,一人执白子,两人轮流放棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在位置用坐标表示是(-2,2),黑棋B所在位置用坐标表示是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,则点C的坐标是__________.
11、(4分)一元二次方程的两根为,,若,则______.
12、(4分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________
13、(4分)请写出的一个同类二次根式:________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某商场欲招聘一名员工,现有甲、乙两人竞聘.通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)如下表所示:
(1)若商场需要招聘负责将商品拆装上架的人员,对计算机、语言和商品知识分别赋权2,3,5,计算两名应试者的平均成绩.从成绩看,应该录取谁?
(2)若商场需要招聘电脑收银员,计算机、语言和商品知识成绩分别占50%,30%,20%,计算两名应试者的平均成绩.从成绩看,应该录取谁?
15、(8分)某货运公司有大小两种货车,3辆大货车与4辆小货车一次可以运货29吨,2辆大货车与6辆小货车一次可以运货31吨.
(1)1辆大货车和1辆小货车一次可以分别运货多少吨?
(2)有46.4吨货物需要运输,货运公司拟安排大小货车共10辆(要求两种货车都要用),全部货物一次运完,其中每辆大货车一次运货花费500元,每辆小货车一次运货花费300元,请问货运公司应如何安排车辆最节省费用?
16、(8分)解下列方程:
17、(10分)用适当的方法解下列方程:
(1)x(2﹣x)=x2﹣2
(2)(2x+5)2﹣3(2x+5)+2=0
18、(10分)对于实数、,定义一种新运算“※”为:.
例如:,
.
(1)化简:.
(2)若关于的方程有两个相等的实数根,求实数的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知反比例函数的图象经过点,若在该图象上有一点,使得,则点的坐标是_______.
20、(4分)数据15、19、15、18、21的中位数为_____.
21、(4分)不等式组恰有两个整数解,则实数的取值范围是______.
22、(4分)如图,已知等边的边长为8,是中线上一点,以为一边在下方作等边,连接并延长至点为上一点,且,则的长为_________.
23、(4分)如图,将沿所在的直线平移得到,如果,,,那么______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如(图1),在平面直角坐标中,A(12,0),B(6,6),点C为线段AB的中点,点D与原点O关于点C对称.
(1)利用直尺和圆规在(图1)中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;
(2)在(图1)中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).
①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;
②当t=5时,CE=CF,请直接写出a的值.
25、(10分)已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?
26、(12分)一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).
(1)求该函数的解析式;
(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分析:根据k=3>0,图象经过第一、三、四象限,y随x增大而增大即可判断A,D选项的正误;把点(2,1)代入y=3x-1即可判断函数图象不过点(2,1)可判断B选项;当3x-1>0,即x>时,y>0,可判断C选项正误.
详解:当k=3>0,图象经过第一、三、四象限,y随x增大而增大即可判断A,D选项错误;
当x=2时,y=2×2-1=3≠1,故选项B错误;
当3x-1>0,即x>时,y>0,,所以C选项正确;
故选C.
点睛:本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.
2、B
【解析】
设从A地到B地的路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,根据题意,分别表示出甲、乙所用时间的代数式,然后再作比较即可。
【详解】
解:设从到达目的地路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,由题意得,
而对于乙: 解得:
因为当a≠b时,(a+b)2>4ab,
所以<1
所以t甲>t乙,即甲先到达,故答案为B.
本题考查了根据实际问题列代数式,列代数式首先要弄清语句中各种数量的意义及其相互关系,本题解题的关键是表示出甲乙所用时间,并选择适当的方法比较出二者的大小.
3、A
【解析】
根据一次函数经过的象限即可确定,解不等式即可得出的取值范围.
【详解】
∵一次函数的图像不经过第四象限,
∴,
解得,
故选:A.
本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.
4、B
【解析】
根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.
【详解】
解:∵A0(1,0),
∴OA0=1,
∴点B1的横坐标为1,
∵B1,B2、B3、…、B8在直线y=2x的图象上,
∴B1纵坐标为2,
∴OA1=OB1= ,
∴A1(,0),
∴B2点的纵坐标为2,
于是得到B3的纵坐标为2()2…
∴B8的纵坐标为2()7
故选:B.
本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出Bn的坐标的变化规律.
5、A
【解析】
如图,取AB,CD的中点K,G,连接KG,BD交于点O,由题意知,点Q运动的路线是线段OG,因为DO=OB,所以DG=GC,所以OG=BC=×4=2,所以点Q移动路线的最大值是2,故选A.
6、D
【解析】
判断是否为直角三角形,只要验证两小边的平方和是否等于最长边的平方即可.
【详解】
A.32+52=34≠62,故不能组成直角三角形,错误;
B.22+32≠52,故不能组成直角三角形,错误;
C.52+62≠72,故不能组成直角三角形,错误;
D.62+82=100=102,故能组成直角三角形,正确.
故选D.
本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
7、A
【解析】
求出的结果,即可选出答案.
【详解】
解:=3,
故选:A.
本题考查了二次根式的性质的应用,注意:.
8、D
【解析】
A、72+242=252,符合勾股定理的逆定理,是直角三角形;
B、42+52=()2,符合勾股定理的逆定理,是直角三角形;
C、12+()2=()2,符合勾股定理的逆定理,是直角三角形;
D、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形.
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20%.
【解析】
分别设每千克A、B、C三种水果的成本为x、y、z,设丙每盒成本为m,然后根据题意将甲、乙、丙三种方式的每盒成本和利润用x表示出来即可求解.
【详解】
设每千克A、B、C三种水果的成本分别为为x、y、z,依题意得:
6x+3y+z=12.5x,
∴3y+z=6.5x,
∴每盒甲的销售利润=12.5x•20%=2.5x
乙种方式每盒成本=2x+6y+2z=2x+13x=15x,
乙种方式每盒售价=12.5x•(1+20%)÷(1-25%)=20x,
∴每盒乙的销售利润=20x-15x=5x,
设丙每盒成本为m,依题意得:m(1+40%)•0.8-m=1.2x,
解得m=10x.
∴当销售甲、乙、丙三种方式的水果数量之比为2:2:5时,
总成本为:12.5x•2+15x•2+10x•5=105x,
总利润为:2.5x•2+5x×2+1.2x•5=21x,
销售的总利润率为 ×100%=20%,
故答案为:20%.
此题考查了三元一次方程的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解题的关键.
10、 (3,3)
【解析】
根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.
【详解】
由题意可得如图所示的平面直角坐标系,
故点C的坐标为(3,3),
故答案为(3,3).
本题考查坐标确定位置,解题的关键是明确题意,建立合适的平面直角坐标系.
11、-7
【解析】
先用根与系数的关系,确定m、n的和与积,进一步确定a的值,然后将m代入,得到,最后再对变形即会完成解答.
【详解】
解:由得:m+n=-5,mn=a,即a=2
又m是方程的根,则有,
所以+(m+n)=-2-5=-7
故答案为-7.
本题主要考查了一元二次方程的解和多项式的变形,其中根据需要对多项式进行变形是解答本题的关键.
12、2
【解析】
解:∵四边形ABCD是菱形,AC=2,BD=,
∴∠ABO=∠CBO,AC⊥BD.
∵AO=1,BO=,
∴AB=2,
∴sin∠ABO==
∴∠ABO =30°,
∴∠ABC=∠BAC =60°.
由折叠的性质得,EF⊥BO,BE=EO,BF=FO,∠BEF=∠OEF,;
∵∠ABO=∠CBO,
∴BE=BF,
∴△BEF是等边三角形,
∴∠BEF=60°,
∴∠OEF=60°,
∴∠AEO=60°,
∵∠BAC =60°.
∴△AEO是等边三角形,,
∴AE=OE,
∴BE=AE,同理BF=FC,
∴EF是△ABC的中位线,
∴EF=AC=1,AE=OE=1.
同理CF=OF=1,
∴五边形AEFCD的周长为=1+1+1+2+2=2.
故答案为2.
13、
【解析】
试题分析:因为,所以与是同类二次根式的有:,….(答案不唯一).
考点:1.同类二次根式;2.开放型.
三、解答题(本大题共5个小题,共48分)
14、(1)应该录取乙;(2)应该录取甲.
【解析】
(1)根据题意和图表分别计算甲和乙的加权平均数,然后比较大小即可;
(2)根据题意和图表分别计算两名应试者的平均成绩,然后比较大小即可.
【详解】
解:(1),
,
∵,
∴应该录取乙;
(2)=70×50%+50×30%+80×20%=66,=60×50%+60×30%+80×20%=64,
∵,
∴应该录取甲.
加权平均数在实际生活中的应用是本题的考点,熟练掌握其计算方法是解题的关键,加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算.
15、(1)1辆大货车和1辆小货车一次可以分别运货5吨和3.5吨;(2)货运公司安排大货车8辆,小货车2辆,最节省费用.
【解析】
(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;
(2)设货运公司安排大货车m辆,则安排小货车(10-m)辆.根据10辆货车需要运输46.4吨货物列出不等式.
【详解】
解:(1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,
根据题意,得,解得,
所以大货车和1辆小货车一次可以分别运货5吨和3.5吨;
(2)设货运公司安排大货车m辆,则安排小货车(10-m)辆,
根据题意可得:5m+3.5(10-m)≥46.4,
解得:m≥7.6,
因为m是正整数,且m≤10,
所以m=8或9或10,
所以10-m=2或1或0,
方案一:所需费用=500×8+300×2=4600(元),
方案二:所需费用=500×9+300×1=4800(元),
方案三:所需费用=500×10+300×0=5000(元),
因为4600<4800<5000,
所以货运公司安排大货车8辆,则安排小货车2辆,最节省费用.
考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.
16、x1=5,x2=1.
【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
x2-10x+25=2(x-5),
(x-5)2-2(x-5)=0,
(x-5)(x-5-2)=0,
x-5=0,x-5-2=0,
x1=5,x2=1.
本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.
17、(1)x1=,x1=;(1)x1=﹣,x1=﹣1.
【解析】
(1)整理后求出b1﹣4ac的值,再代入公式求出即可;
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
(1)x(1﹣x)=x1﹣1,整理得:x1﹣x﹣1=0,△=b1﹣4ac=(﹣1)1﹣4×1×(﹣1)=5,x,∴x1,x1;
(1)(1x+5)1﹣3(1x+5)+1=0,(1x+5﹣1)(1x+5﹣1)=0,1x+5﹣1=0,1x+5﹣1=0,∴x1,x1=﹣1.
本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解答此题的关键.
18、(1);(2)的值为1.
【解析】
(1)根据定义运算列出分式,然后进行化简计算;
(2)根据定义运算列出方程并进行化简整理,然后利用一元二次方程根的判别式列方程求解即可.
【详解】
解:(1)
(2)由题意得:
化简整理得:
由题意知:且
化简得:
∴(舍),
∴的值为1.
本题考查分式的化简和一元二次方程根的判别式,正确理解题意准确进行计算是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△AOE≌△A′OF,可得OF=OE=4,A′F=AE=3,即A′(4,-3),求出线段AA′的中垂线的解析式,利用方程组确定交点坐标即可.
【详解】
解:如图,作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△AOE≌△A′OF,可得OF=OE=5,A′F=AE=4,即A′(5,-4).
∵反比例函数的图象经过点A(4,5),
所以由勾股定理可知:OA=,
∴k=4×5=20,
∴y=,
∴AA′的中点K(),
∴直线OK的解析式为y=x,
由,
解得或,
∵点P在第一象限,
∴P(),
故答案为().
本题考查反比例函数图象上点的坐标特征,一次函数的应用等知识,解题的关键是学会构造全等三角形解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考填空题中的压轴题.
20、1
【解析】
将这五个数排序后,可知第3位的数是1,因此中位数是1.
【详解】
将这组数据排序得:15,15,1,19,21,处于第三位是1,因此中位数是1,
故答案为:1.
考查中位数的意义和求法,将一组数据排序后处在中间位置的一个数或两个数的平均数是中位数.
21、
【解析】
首先利用不等式的基本性质解不等式组,从不等式的解集中找出适合条件的整数解,再进一步确定字母的取值范围即可.
【详解】
解:对于,解不等式①得: ,解不等式②得:,
因为原不等式组有解,所以其解集为,
又因为原不等式组恰有两个整数解,所以其整数解应为7,8,
所以实数a应满足,解得.
故答案为.
本题考查了不等式组的解法和整数解的确定,解题的关键是熟练掌握不等式的基本性质,尤其是性质3,即不等式的两边都乘以或除以一个负数时,不等号的方向要改变,这在解不等式时要随时注意.
22、1
【解析】
作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出,在Rt△CMG中,由勾股定理求出MG,即可得到的长.
【详解】
解:如图示:作CG⊥MN于G,
∵△ABC和△CEF是等边三角形,
∴AC=BC,CE=CF,∠ACB=∠ECF=10°,
∴∠ACB-∠BCE=∠ECF-∠BCE,
即∠ACE=∠BCF,
在△ACE与△BCF中
∴△ACE≌△BCF(SAS),
又∵AD是三角形△ABC的中线
∴∠CBF=∠CAE=30°,
∴,
在Rt△CMG中,,
∴MN=2MG=1,
故答案为:1.
本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF≌△BCF.
23、
【解析】
根据已知条件和平移的性质推出AB=DE=7,△ABC∽△GEC,即可根据相似三角形性质计算GE的长度.
【详解】
解:∵△ABC沿着射线BC的方向平移得到△DEF,AB=7,
∴DE=7,∠A=∠CGE,∠B=∠DEC,
∴△DEF∽△GEC,
∴,
∵,,
∴,
∴EG=,
故填:.
本题主要考查平移的性质、相似三角形的判定和性质,解题的关键在于求证三角形相似,找到对应边.
二、解答题(本大题共3个小题,共30分)
24、(1)四边形OBDA是平行四边形,见解析;(2)①2+,②或或
【解析】
(1)作射线OC,截取CD=OC,然后由对角线互相平分的四边形是平行四边形进行可得到四边形的形状;
(2)①由直线EF恰好平分四边形OBDA的面积可知直线EF必过C,接下来,证明△OEC≌△DFC,从而可求得DF的长度,于是得到BF=2,然后再由两点间的距离公式求得OB的长,从而可求得a的值;
②先求得点E的坐标,然后求得EC的长,从而得到CF1的长,然后依据勾股定理的逆定理证明∠OBA=90°,在△BCF1中,依据勾股定理可求得BF1的长,从而可求得a的值,设点F2的坐标(b,6),由CE=CF列出关于b的方程可求得点F2的坐标,从而可求得a的值,在Rt△CAF3中,取得AF3的长,从而求得点F运动的路程,于是可求得a的值.
【详解】
解:(1)如图所示:
四边形OBDA是平行四边形.
理由如下:∵点C为线段AB的中点,
∴CB=CA.
∵点D与原点O关于点C对称,
∴CO=CD.
∴四边形OBDA是平行四边形.
(2)①如图2所示;
∵直线EF恰好平分四边形OBDA的面积,
∴直线EF必过C(9,3).
∵t=1,
∴OE=1.
∵BD∥OA,
∴∠COE=∠CDF.
∵在△OEC和△DFC中,
∴△OEC≌△DFC.
∴DF=OE=1.
∴BF=4-1=2.
由两点间的距离公式可知OB==6.
∴1a=6+2.
∴a=2+.
②如图3所示:
∵当t=3时,OE=3,
∴点E的坐标(3,0).
由两点间的距离公式可知EC==3.
∵CE=CF,
∴CF=3.
由两点间的距离公式可知OB=BA=6,
又∵OA=4.
∴△OBA为直角三角形.
∴∠OBA=90°.
①在直角△F1BC中,CF1=3,BC=3,
∴BF1=.
∴OF1=6-.
∴a=.
②设F2的坐标为(b,6).由两点间的距离公式可知=3.
解得;b=3(舍去)或b=5.
∴BF2=5-6=6.
∴OB+BF2=6+6.
∴a=.
③∵BO∥AD,
∴∠BAD=∠OBA=90°.
∴AF3==.
∴DF3=6-.
∴OB+BD+DF3=6+4+6-=4-+4.
∴a=.
综上所述a的值为或或.
本题主要考查的是四边形的综合应用,解答本题主要应用了平行四边形的判定、全等三角形的性质和判定、勾股定理和勾股定理的逆定理的应用,两点间的距离公式求得F1B,F2D,F3A的长度是解题的关键.
25、所求的多边形的边数为7,这个多边形对角线为14条.
【解析】
设这个多边形的边数为n,根据多边形的内角和是(n-2)•180°,外角和是360°,列出方程,求出n的值,再根据对角线的计算公式即可得出答案.
【详解】
设这个多边形的边数为n,根据题意,得:
(n﹣2)×180°=360°×2+180°,
解得 n=7,
则这个多边形的边数是7,
七边形的对角线条数为:×7×(7﹣3)=14(条),
答:所求的多边形的边数为7,这个多边形对角线为14条.
本题考查了对多边形内角和定理和外角和的应用,注意:边数是n的多边形的内角和是(n-2)•180°,外角和是360°.
26、(1)y=-2x+1;(2)2;点P的坐标为(0,1).
【解析】试题分析:(1)、将A、B两点的坐标代入解析式求出k和b的值,从而得出函数解析式;(2)、首先得出点C关于y轴的对称点为C′,然后得出点D的坐标,根据C′、D的坐标求出直线C′D的解析式,从而求出点P的坐标,然后根据勾股定理得出C′D的长度,从而得出答案.
试题解析:(1)将点A、B的坐标代入y=kx+b并计算得k=-2,b=1.
∴解析式为:y=-2x+1;
(2)存在一点P,使PC+PD最小.
∵0(0,0),A(2,0),且C为AO的中点,
∴点C的坐标为(1,0), 则C关于y轴的对称点为C′(-1,0),
又∵B(0,1),A(2,0)且D为AB的中点, ∴点D的坐标为(1,2),
连接C′D,设C′D的解析式为y=kx+b,
有, 解得, ∴y=x+1是DC′的解析式, ∵x=0,∴y=1,
即P(0,1). ∵PC+PD的最小值=C′D,
∴由勾股定理得C′D=2.
题号
一
二
三
四
五
总分
得分
应试者
计算机
语言
商品知识
甲
70
50
80
乙
60
60
80
相关试卷
这是一份2024-2025学年广东省华师附中新世界学校九年级数学第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年东北师大附中净月实验学校九年级数学第一学期开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年广东省华师附中实验学校九年级数学第一学期期末监测试题含答案,共9页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。