2024-2025学年广东省深圳市龙岗区龙岗街道新梓学校九年级数学第一学期开学达标检测模拟试题【含答案】
展开这是一份2024-2025学年广东省深圳市龙岗区龙岗街道新梓学校九年级数学第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,PA、PB分别与⊙O相切于点A、B,若∠P=50°,则∠C的值是( )
A.50°B.55°C.60°D.65°
2、(4分)下列计算错误的是
A.B.
C.D.
3、(4分)正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是( )
A.正三角形B.正方形C.等腰直角三角形D.平行四边形
4、(4分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F,若小敏行走的路程为3100m,则小聪行走的路程为( )m.
A.3100B.4600C.3000D.3600
5、(4分)期末考试后,办公室里有两位数学老师正在讨论他们班的数学考试成绩,林老师:“我班的学生考得还不错,有一半的学生考79分以上,一半的学生考不到79分.”王老师:“我班大部分的学生都考在80分到85分之间喔.”依照上面两位老师所叙述的话你认为林、王老师所说的话分别针对( )
A.平均数、众数B.平均数、极差
C.中位数、方差D.中位数、众数
6、(4分)如图,有一张直角三角形纸片,两条直角边,,将折叠,使点和点重合,折痕为,则的长为( )
A.1.8B.2.5C.3D.3.75
7、(4分)若点P(2m+1,)在第四象限,则m的取值范围是( )
A.B.C.D.
8、(4分)在平面直角坐标系中,把点绕原点顺时针旋转所得到的点的坐标是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_______元.
10、(4分)如果函数y=kx+b的图象与x轴交点的坐标是(3,0),那么一元一次方程kx+b=0的解是_____.
11、(4分)如果最简二次根式和是同类二次根式,那么a=_______
12、(4分)某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是__________个.
13、(4分)在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系xOy中,直线y=--x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的表达式.
15、(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵8元,用300元购买甲种商品的件数恰好与用250元购买乙种商品的件数相同.
(1)求甲、乙两种商品每件的价格各是多少元?
(2)计划购买这两种商品共80件,且投入的经费不超过3600元,那么,最多可购买多少件甲种商品?
16、(8分)已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.
(1)当x≥50时,求y关于x的函数关系式;
(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量.
17、(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家快递公司每月的投递总件数的增长率相同,今年三月份与五月份完成投递的快递总件数分别为30万件和36.3万件,求该快递公司投递快递总件数的月平均增长率.
18、(10分)如图,中,点,分别是边,的中点,过点作交的延长线于点,连结.
(1)求证:四边形是平行四边形.
(2)当时,若,,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是______.
20、(4分)某市规定了每月用水不超过l8立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为_____立方米.
21、(4分)已知直线在轴上的截距是-2,且与直线平行,那么该直线的解析是______
22、(4分)如图,点是的对称中心, ,是边上的点,且是边上的点,且,若分别表示和的面积则.
23、(4分)如图,正方形OABC的边OA,OC在坐标轴上,矩形CDEF的边CD在CB上,且5CD=3CB,边CF在轴上,且CF=2OC-3,反比例函数y= (k>0)的图象经过点B,E,则点E的坐标是____
二、解答题(本大题共3个小题,共30分)
24、(8分)在矩形中,,,是边上一点,以点为直角顶点,在的右侧作等腰直角.
(1)如图1,当点在边上时,求的长;
(2)如图2,若,求的长;
(3)如图3,若动点从点出发,沿边向右运动,运动到点停止,直接写出线段的中点的运动路径长.
25、(10分)如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB与反比例函数的图象交于点C和点D(1,a).
(1)求直线AB和反比例函数的解析式.
(2)求∠ACO的度数.
26、(12分)已知:四边形ABCD,E,F,G,H是各边的中点.
(1)求证:四边形EFGH是平行四边形;
(2)假如四边形ABCD是一个矩形,猜想四边形EFGH是什么图形?并证明你的猜想.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
连接OA、OB,由已知的PA、PB与圆O分别相切于点A、B,根据切线的性质得到OA⊥AP,OB⊥PB,从而得到∠OAP=∠OBP=90°,然后由已知的∠P的度数,根据四边形的内角和为360°,求出∠AOB的度数,最后根据同弧所对的圆周角等于它所对圆心角度数的一半即可得到∠C的度数.
【详解】
解:连接OA、OB,
∵PA、PB与圆O分别相切于点A、B,
∴OA⊥AP,OB⊥PB,
∴∠OAP=∠OBP=90°,又∠P=50°,
∴∠AOB=360°-90°-90°-50°=130°,
又∵∠ACB和∠AOB分别是弧AB所对的圆周角和圆心角,
∴∠C=∠AOB=×130°=65°.
故选:D.
此题考查了切线的性质,以及圆周角定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题,同时要求学生掌握同弧所对的圆周角等于所对圆心角的一半.
2、A
【解析】
根据根式的计算法则逐个识别即可.
【详解】
A 错误,;
B. ,正确;
C. ,正确
D. ,正确
故选A.
本题主要考查根式的计算,特别要注意算术平方根的计算.
3、B
【解析】
试题分析:正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,
故选B.
考点:1、中心对称图形;2、轴对称图形
4、B
【解析】
连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.
【详解】
连接GC,
∵四边形ABCD为正方形,
所以AD=DC,∠ADB=∠CDB=45°,
∵∠CDB=45°,GE⊥DC,
∴△DEG是等腰直角三角形,
∴DE=GE.
在△AGD和△GDC中,
,
∴△AGD≌△GDC(SAS)
∴AG=CG,
在矩形GECF中,EF=CG,
∴EF=AG.
∵BA+AD+DE+EF-BA-AG-GE,
=AD=1500m.
∵小敏共走了3100m,
∴小聪行走的路程为3100+1500=4600(m),
故选B.
本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF,DE=GE.
5、D
【解析】
试题分析:∵有一半的学生考79分以上,一半的学生考不到79分,
∴79分是这组数据的中位数,
∵大部分的学生都考在80分到85分之间,
∴众数在此范围内.
故选D.
考点:统计量的选择.
6、D
【解析】
设CD=x,则BD=AD=10-x.在Rt△ACD中运用勾股定理列方程,就可以求出CD的长.
【详解】
解:设CD=x,则BD=AD=10-x.
∵在Rt△ACD中,(10-x)2=x2+52,
100+x2-20x=x2+25,
∴20x=75,
解得:x=3.75,
∴CD=3.75.
故选:D.
本题主要考查了折叠问题和勾股定理的综合运用.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质,用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
7、C
【解析】
点P(2m+1,)在第四象限,故2m+1>0,<0,解不等式可得.
【详解】
∵点P(2m+1,)在第四象限,
∴2m+1>0,<0,
解得:.
故选:C
考核知识点:点的坐标和象限.理解点的坐标符号与限项关系.
8、C
【解析】
根据旋转的性质,即可得到点B的坐标.
【详解】
解:把点绕原点顺时针旋转,
∴点B的坐标为:.
故选:C.
本题考查了旋转的性质,解题的关键是熟练掌握点坐标顺时针旋转90°的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、13
【解析】
试题解析:
故答案为
点睛:题目主要考查加权平均数.分别用单价乘以相应的百分比然后相加,计算即可得解.
10、1
【解析】
根据方程的解是函数图象与x轴的交点的横坐标,即可求解.
【详解】
解:∵函数y=kx+b的图象与x轴的交点坐标是(1,0),
∴方程kx+b=0的解是x=1.
故答案为:1.
本题考查一次函数与一元一次方程,方程的解是函数图象与x轴的交点的横坐标
11、3
【解析】
分析:根据同类二次根式的被开方式相同列方程求解即可.
详解:由题意得,
3a+4=25-4a,
解之得,
a=3.
故答案为:3.
点睛:本题考查了同类二次根式的应用,根据同类二次根式的定义列出关于a的方程是解答本题的关键.
12、1.
【解析】
解:由图可知,把数据从小到大排列的顺序是:180、182、1、185、186,中位数是1.
故答案为1.
本题考查折线统计图;中位数.
13、.
【解析】
解:画树状图得:
∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,
∴能组成分式的概率是
故答案为.
此题考查了列表法或树状图法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.
三、解答题(本大题共5个小题,共48分)
14、(1)AB的长10;点C的坐标为(16,0)(2)直线CD的解析式.
【解析】
解:(1)在平面直角坐标系xOy中,直线与x轴,y轴分别交于点A,点B,当x=0时, y=,所以B点的坐标为(0,8),所以OA=8,当y=0,则,解得x=6,那么A点的坐标为(6,0),所以OB=6,因此AB的长=;若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,点B的坐标为(0,8),根据折叠的特征AB=AC,所以OC=OA+AC=6+10=16,所以点C的坐标为(16,0)
(2)点D在y轴的负半轴上,由(1)知B点的坐标为(0,8),所以点D的坐标为(0,-8),由(1)知点C的坐标为(16,0),因为直线CD过点C、D,所以设直线CD的解析式为y=kx+b,则,解得,所以直线CD的解析式
考点:一次函数,勾股定理,折叠
点评:本题考查一次函数,勾股定理,折叠,解答本题需要掌握用待定系数法求一次函数的解析式,熟悉勾股定理的内容,熟悉折叠的性质
15、 (1)甲,乙两种商品每件的价格各为48,40元;(2)最多可购买50件甲种商品
【解析】
(1)根据题意:用300元购买甲种商品的件数恰好与用250元购买乙种商品的件数相同,设立未知数,建立方程解出来即可
(2)根据经费不超过3600元建立不等式关系,解出即可
【详解】
解:(1)设每件乙种商品的价格为元,则每件甲种商品的价格为元,
根据题意,得,
解得.
经检验: 是原方程的解
即:甲,乙两种商品每件的价格各为48,40元.
(2) 设购买甲种商品件,则购买乙种商品件.
由题意知:
解得:.
即:最多可购买50件甲种商品.
本题考查分式方程的应用题和不等式应用问题,关键在于找到等量关系,根据等量关系建立方程或者不等式是关键.
16、(1)y=6x﹣100;(2)1吨
【解析】
(1)设y关于x的函数关系式y=kx+b,然后利用待定系数法求一次函数解析式解答;
(2)把水费620元代入函数关系式解方程即可.
【详解】
(1)设y关于x的函数关系式y=kx+b,则:
解得:,所以,y关于x的函数关系式是y=6x﹣100;
(2)由图可知,当y=620时,x>50,所以,6x﹣100=620,解得:x=1.
答:该企业2018年10月份的用水量为1吨.
本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.
17、投递快递总件数的月平均增长率是10%.
【解析】
设投递快递总件数的月平均增长率是x,依题意得:30(1+x)2=36.3,解方程可得.
【详解】
解:设投递快递总件数的月平均增长率是x,
依题意,得:30(1+x)2=36.3
则1+x=±1.1
解得:x1=0.1=10%,x2=−2.1(舍),
答:投递快递总件数的月平均增长率是10%.
考核知识点:一元二次方程的应用.理解增长率是关键.
18、(1)详见解析;(2)
【解析】
(1)根据三角形的中位线的性质得出DE∥BC,再根据已知CF∥AB即可得到结论;
(2)根据等腰三角形的性质三线合一得出,然后利用勾股定理即可得到结论.
【详解】
(1)证明:∵点D,E分别是边AB,AC的中点,
∴DE∥BC.
∵CF∥AB,
∴四边形BCFD是平行四边形;
(2)解:∵AB=BC,E为AC的中点,
∴BE⊥AC.
∴
∵AB=2DB=4,BE=3,
本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据正方形的性质求出AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CHAF.在Rt△AMF中,根据勾股定理求出AF即可.
【详解】
∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M.连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°.
∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°.
∵H为AF的中点,∴CHAF.在Rt△AMF中,由勾股定理得:AF,∴CH.
故答案为.
本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解答此题的关键是能正确作出辅助线,并求出AF的长和得出CHAF,有一定的难度.
20、1
【解析】
根据题意和函数图象中的数据可以求得当x>18时对应的函数解析式,根据102>54可知,小丽家用水量超过18立方米,从而可以解答本题.
【详解】
解:设当x>18时的函数解析式为y=kx+b,
图象过(18,54),(28,94)
∴,得
即当x>18时的函数解析式为:y=4x-18,
∵102>54,
∴小丽家用水量超过18立方米,
∴当y=102时,102=4x-18,得x=1,
故答案为:1.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
21、
【解析】
【分析】根据一次函数的性质可求得.对于直线在轴上的截距是b;k是斜率,决定直线的位置关系.
【详解】因为,已知直线在轴上的截距是-2,
所以,b=-2.
又直线与直线平行,
所以,k=3.
故答案为:
【点睛】本题考核知识点:一次函数. 解题关键点:熟记一次函数解析式中系数的意义.
22、
【解析】
根据同高的两个三角形面积之比等于底边之比得出再由点O是▱ABCD的对称中心,根据平行四边形的性质可得S△AOB=S△BOC= ,从而得出S1与S2之间的等量关系.
【详解】
解:由题意可得
∵点O是▱ABCD的对称中心,
∴S△AOB=S△BOC= ,
故答案为:
本题考查了中心对称,三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出是解题的关键.
23、
【解析】
设正方形OABC的边0A=a,可知OA=OC=AB=CB=a,所以点B的坐标为(aa),推出反比例函数解析式的k=a,再由CF=2OC-3,可知CF=2a-3,推出点的坐标为( ,3a-3),根据5CD=3CB,可求出点E的坐标
【详解】
由题意可设:正方形OABC的边OA=a
∴OA= OC=AB= CB
∴点B的坐标为(a,a),即k=a
CF=2OC-3
∴CF=2a-3
∵OF=OC+CF=a+2a-3=3a-3
∴点E的纵坐标为3a-3
将3a-3代入反比例函数解析式y= 中,可得点E的横坐标为
∵四边形CDEF为矩形,
∴CD=EF=
5CD=3CB
=3a,可求得:a=
将a=,代入点E的坐标为( ,3a-3),
可得:E的坐标为
故答案为:
本题考查了反比例函数图像上点的坐标特征,正方形矩形的性质,熟知在反比例函数的题目中利用设点法找等量关系解方程是解题关键
二、解答题(本大题共3个小题,共30分)
24、(1);(2);(3)线段的中点的运动路径长为.
【解析】
(1)如图1中,证明△ABE≌△ECF(AAS),即可解决问题.
(2)如图2中,延长DF,BC交于点N,过点F作FM⊥BC于点M.证明△EFM≌△DNC(AAS),设NC=FM=x,利用勾股定理构建方程即可解决问题.
(3)如图3中,在BC上截取BM=BA,连接AM,MF,取AM的中点H,连接HQ.由△ABE∽△AMF,推出∠AMF=∠ABE=90°,由AQ=FQ,AH=MH,推出,HQ∥FM,推出∠AHQ=90°,推出点Q的运动轨迹是线段HQ,求出MF的长即可解决问题.
【详解】
(1)如图1中,
四边形是矩形,
,
,,
,,
,
,
.
(2)如图2中,延长,交于点,过点作于点.
同理可证,
设,则,
,,
,
,
,
,,,
即在中,,
在中,,
在中,,
即,解得或(舍弃),即,
(3)如图3中,在上截取,连接,,取的中点,连接.
,
,
,
,
,,
,,
,,
,
点的运动轨迹是线段,
当点从点运动到点时,,
,
,
线段的中点的运动路径长为.
本题考查了全等三角形、勾股定理、相似三角形,掌握矩形的性质及全等三角形的性质和判定、利用勾股定理列方程、相似三角形的性质是解题的关键.
25、(1)y=x+ ,y=﹣;(2)∠ACO=30°;
【解析】
(1)根据A、B两点坐标求得一次函数解析式,再求得D点的具体坐标,从而求得反比例函数的解析式.
(2)联立函数解析式求得C点坐标,过C点作CH⊥x轴于H,证明为等腰三角形,根据特殊直角三角形求得的度数,从而求得的度数.
【详解】
解:(1)设直线AB的解析式为: ,
把A(0,),B(2,0)分别代入,
得,,
解得 =,b=.
∴直线AB的解析式为:y=x+;
∵点D(1,a)在直线AB上,
∴a=+=,即D点坐标为(1,),
又∵D点(1,)在反比例函数的图象上,
∴k=1×=﹣,
∴反比例函数的解析式为:y=﹣;
(2)由,解得或,
∴C点坐标为(3,﹣),过C点作CH⊥x轴于H,如图,
∵OH=3,CH=,
∴OC=,而OA=,
∴OA=OC,
∴∠OAC=∠OCA.
又∵OB=2,
∴AB=,
在Rt△AOB中,
∴∠OAB=30°,
∴∠ACO=30°
本题考查了一次函数与反比例函数的交点问题,解题的关键是熟练掌握待定系数法.
26、(1)见解析;(2)四边形EFGH是菱形,理由见解析
【解析】
(1)根据三角形中位线定理可EF∥AC∥HG,HE∥BD∥GF,即可解答.
(2)根据菱形是邻边相等的平行四边形,证明EF=AC=BD=EH,即可解答.
【详解】
(1)∵E,F,G,H是各边的中点,
∴EF∥AC∥HG,HE∥BD∥GF,
∴四边形EFGH是平行四边形;
(2)四边形ABCD是一个矩形,四边形EFGH是菱形;
∵四边形ABCD是矩形,
∴AC=BD,
∴EF=AC=BD=EH,
∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
此题考查平行四边形的判定,菱形的判定,解题关键在于利用三角形中位线定理进行求证,掌握各判定定理.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份广东省深圳市龙岗区龙岗街道新梓学校2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了对于二次函数,下列说法正确的是等内容,欢迎下载使用。
这是一份2023-2024学年广东省深圳市龙岗区龙岗街道新梓学校数学九上期末综合测试模拟试题含答案,共7页。试卷主要包含了下列说法,如图,厂房屋顶人字架等内容,欢迎下载使用。
这是一份2023-2024学年广东省深圳市龙岗区龙岗街道新梓学校八年级数学第一学期期末教学质量检测试题含答案,共7页。试卷主要包含了下列计算,正确的是,下列各式中计算正确的是,在平面直角坐标系中,若点P等内容,欢迎下载使用。