搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年广东省深圳市外国语学校数学九上开学监测模拟试题【含答案】

    2024-2025学年广东省深圳市外国语学校数学九上开学监测模拟试题【含答案】第1页
    2024-2025学年广东省深圳市外国语学校数学九上开学监测模拟试题【含答案】第2页
    2024-2025学年广东省深圳市外国语学校数学九上开学监测模拟试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年广东省深圳市外国语学校数学九上开学监测模拟试题【含答案】

    展开

    这是一份2024-2025学年广东省深圳市外国语学校数学九上开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,点A坐标为(3,0),B是y轴正半轴上一点,AB=5,则点B的坐标为( )
    A.(4,0)B.(0,4)C.(0,5)D.(0,)
    2、(4分)已知x=,y=,则x2+xy+y2的值为( )
    A.2B.4C.5D.7
    3、(4分)电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到电视节目的区域就越广.电视塔高(单位:)与电视节目信号的传播半径(单位:)之间存在近似关系,其中是地球半径.如果两个电视塔的高分别是,,那么它们的传播半径之比是,则式子化简为( )
    A.B.C.D.
    4、(4分)位参加歌唱比赛的同学的成绩各不相同,按成绩取前位进入决赛。如果小尹知道了自己的成绩后,要判断自己能否进入决赛,他还要知道这位同学成绩的()
    A.平均数B.众数C.方差D.中位数
    5、(4分)医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为( )
    A.0.43×B.0.43×C.4.3×D.4.3×
    6、(4分)如图,一次函数的图象交轴于点,交轴于点,点在线段上(不与点,重合),过点分别作和的垂线,垂足为.当矩形的面积为1时,点的坐标为( )
    A.B.C.或D.或
    7、(4分)若 0≤ a ≤1,则=( )
    A.2 a -1B.1C.-1D.-2 a +1
    8、(4分)下列图形中,是中心对称图形但不是轴对称图形的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;
    10、(4分)计算:的结果是__________.
    11、(4分)直线y=2x-1沿y轴平移3个单位长度,平移后直线与x轴的交点坐标为 .
    12、(4分)______.
    13、(4分)甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在矩形ABCD中,AB=1,对角线AC、BD相交于点O,过点O作EF⊥AC分别交射线AD与射线CB于点E和点F,联结CE、AF.
    (1)求证:四边形AFCE是菱形;
    (2)当点E、F分别在边AD和BC上时,如果设AD=x,菱形AFCE的面积是y,求y关于x的函数关系式,并写出x的取值范围;
    (3)如果△ODE是等腰三角形,求AD的长度.
    15、(8分)计算化简
    (1)
    (2)
    16、(8分)(1)计算:
    (2)解方程:.
    17、(10分)如图所示,直线分别与轴,轴交于点.点是轴负半轴上一点,
    (1)求点和点的坐标;
    (2)求经过点和的一次函数的解析式.
    18、(10分)已知中,其中两边的长分别是3,5,求第三边的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知在同一坐标系中,某正比例函数与某反比例函数的图像交于 A,B 两点,若点 A 的坐标为(-1,4), 则点 B 的坐标为___.
    20、(4分)函数中,自变量的取值范围是 .
    21、(4分)如图,和的面积相等,点在边上,交于点.,,则的长是______.
    22、(4分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离与慢车行驶的时间之间的函数关系如图所示,则快车的速度为__________.
    23、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:=2,=1.5,则射击成绩较稳定的是_______(填“甲”或“乙”).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某校八年级为庆祝中华人民共和国建国70周年,准备举行唱红歌、颂经典活动.八年级(2)班积极准备,需购买文件夹若干,某文具店有甲、乙两种文件夹.
    (1)若该班只购买甲种文件夹,且购买甲种文件夹的花费(单位:元)与其购买数量(单位:件)满足一次函数关系,若购买20个,需花费180元;若购买30个,需花费260元.该班若需购买甲种文件夹60件,求需花费多少元?
    (2)若该班购买甲,乙两种文件夹,那么甲种文件夹的单价比乙种文件夹的单价贵2元,若用240元购买甲种文件夹的数量与用180元购买乙种文件夹的数量相同.求该文具店甲乙两种文件夹的单价分别是多少元?
    25、(10分)中国古代有着辉煌的数学成就,《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》等是我国古代数学的重要文献.
    (1)小聪想从这4部数学名著中随机选择1部阅读,求他选中《九章算术》的概率;
    (2)小聪拟从这4部数学名著中选择2部作为假课外拓展学习内容,用列表或树状图求选中的名著恰好是《九章算术》和《周牌算经》的概率.
    26、(12分)如图,已知:在平行四边形ABCD中,AB=2,AD=4,∠ABC=60°,E为AD上一点,连接CE,AF∥CE且交BC于点F.
    (1)求证:四边形AECF为平行四边形.
    (2)证明:△AFB≌△CE D.
    (3)DE等于多少时,四边形AECF为菱形.
    (4)DE等于多少时,四边形AECF为矩形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    分析:根据勾股定理解答本题即可.
    详解:因为点A坐标为(3,0),B是y轴正半轴上一点,AB=5,
    所以OB==4 ,
    所以点B的坐标为(0,4),
    故选B.
    点睛:本题考查了两点之间的距离,解本题的关键是根据勾股定理解答.
    2、B
    【解析】
    试题分析:根据二次根式的运算法则进行运算即可.
    试题解析:
    .
    故应选B
    考点:1.二次根式的混合运算;2.求代数式的值.
    3、D
    【解析】
    乘以分母的有理化因式即可完成化简.
    【详解】
    解:.
    故选D.
    本题考查了二次根式的应用,了解二次根式的有理化因式是解答本题的关键,难度不大.
    4、D
    【解析】
    参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.
    【详解】
    由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.
    故选D.
    此题考查统计量的选择,解题关键在于掌握中位数的意义.
    5、D
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:0.000043毫米,则这个数用科学记数法表示为4.3×10-5毫米,
    故选:D.
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    6、C
    【解析】
    设P(a,−2a+3),则利用矩形的性质列出关于a的方程,通过解方程求得a值,继而求得点P的坐标.
    【详解】
    解:∵点P在一次函数y=−2x+3的图象上,
    ∴可设P(a,−2a+3)(a>0),
    由题意得 a(−2a+3)=2,
    整理得:2a2−3a+2=0,
    解得 a2=2,a2=,
    ∴−2a+3=2或−2a+3=2.
    ∴P(2,2)或时,矩形OCPD的面积为2.
    故选:C.
    本题考查了一次函数图象上点的坐标特征.一次函数图象上所有点的坐标都满足该函数关系式.
    7、B
    【解析】
    根据二次根式的性质进行化简即可.
    【详解】
    解:∵ 0≤ a ≤1,∴a-1≤0,
    ∴原式= .
    故选:B.
    本题考查二次根式的性质和化简,注意字母的取值.
    8、A
    【解析】
    解: B、C、D都是轴对称图形,即对称轴如下红色线;
    故选A.
    此题考查轴对称图形和中心对称图形的概念.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(-1,2)
    【解析】
    关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
    【详解】
    关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
    故Q坐标为(-1,2).
    故答案为:(-1,2).
    此题考查的是关于y轴对称的两点坐标的特点,掌握两点关于坐标轴或原点对称坐标特点是解决此题的关键.
    10、;
    【解析】
    根据二次根式的运算即可求解.
    【详解】
    =
    此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质进行化简.
    11、(-1,0),(2,0)
    【解析】
    (1)若将直线沿轴向上平移3个单位,则平移后所得直线的解析式为:,
    在中,由可得:,解得:,
    ∴平移后的直线与轴的交点坐标为:;
    (2)若将直线沿轴向下平移3个单位,则平移后所得直线的解析式为:,
    在中,由可得:,解得:,
    ∴平移后的直线与轴的交点坐标为:;
    综上所述,平移后的直线与轴的交点坐标为:或.
    12、1
    【解析】
    利用平方差公式即可计算.
    【详解】
    原式.
    故答案为:1.
    本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
    13、1
    【解析】
    结合题意分析函数图象:线段OC对应甲乙同时从A地出发到A返回前的过程,此过程为1小时;线段CD对应甲返回走到与乙相遇的过程(即甲的速度大于乙的速度);线段DE对应甲与乙相遇后继续返回走至到达A地的过程,因为速度相同,所以甲去和回所用时间相同,即x=2时,甲回到A地,此时甲乙相距120km,即乙2小时行驶120千米;线段EF对应甲从A地重新出发到追上乙的过程,即甲用(5﹣2)小时的时间追上乙,可列方程求出甲此时的速度,进而求出甲到达B地的时刻,再求出此时乙所行驶的路程.
    【详解】
    解:∵甲出发到返回用时1小时,返回后速度不变,
    ∴返回到A地的时刻为x=2,此时y=120,
    ∴乙的速度为60千米/时,
    设甲重新出发后的速度为v千米/时,列得方程:
    (5﹣2)(v﹣60)=120,
    解得:v=100,
    设甲在第t小时到达B地,列得方程:
    100(t﹣2)=10
    解得:t=6,
    ∴此时乙行驶的路程为:60×6=360(千米),
    乙离B地距离为:10﹣360=1(千米).
    故答案为:1.
    本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2);(3)AD的值为或.
    【解析】
    (1)由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.
    (2)由cs∠DAC=,求出AE即可解决问题;
    (3)分两种情形分别讨论求解即可.
    【详解】
    (1)①证明:如图1中,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,OB=OD,
    ∴∠EDO=∠FBO,
    在△DOE和△BOF中,

    ∴△DOE≌△BOF,
    ∴EO=OF,∵OB=OD,
    ∴四边形EBFD是平行四边形,
    ∵EF⊥BD,OB=OD,
    ∴EB=ED,
    ∴四边形EBFD是菱形.
    (2)由题意可知:,,
    ∵,
    ∴,
    ∴,
    ∵AE≤AD,
    ∴,
    ∴x2≥1,
    ∵x>0,
    ∴x≥1.
    即(x≥1).
    (3)①如图2中,当点E在线段AD上时,ED=EO,则Rt△CED≌Rt△CEO,
    ∴CD=CO=AO=1,
    在Rt△ADC中,AD=.
    如图3中,当的E在线段AD的延长线上时,DE=DO,
    ∵DE=DO=OC,EC=CE,
    ∴Rt△ECD≌Rt△CEO,
    ∴CD=EO,
    ∵∠DAC=∠EAO,∠ADC=∠AOE=90°,
    ∴△ADC≌△AOE,
    ∴AE=AC,
    ∵EO垂直平分线段AC,
    ∴EA=EC,
    ∴EA=EC=AC,
    ∴△ACE是等边三角形,
    ∴AD=CD•tan30°=,
    综上所述,满足条件的AD的值为或.
    本题考查四边形综合题、矩形的性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.
    15、(1)(2)
    【解析】
    (1)原式第一项利用零指数公式化简,第二项利用负指数公式化简,最后一项利用绝对值的代数意义化简,计算即可得到结果;
    (2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.
    【详解】
    解:(1)原式=1+3-(-2)=6-;
    (2)原式==
    本题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.
    16、(1);(2)x1=0,x2=﹣1.
    【解析】
    (1)先算乘法,根据二次根式化简,再合并同类二次根式即可;
    (2)分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    (1)原式==;
    (2)x2+1x=0,
    x(x+1)=0,
    x=0,x+1=0,
    x1=0,x2=﹣1.
    本题考查二次根式的混合运算和解一元二次方程,能正确运用运算法则进行化简是解(1)的关键,能把一元二次方程转化成一元一次方程是解(2)的关键.
    17、(1)点坐标为,B点坐标为;(2)
    【解析】
    (1)分别令y=0和x=0即可求出A,B两点坐标;
    (2)根据等腰三角形的性质得出点C的坐标,再利用待定系数法求出直线AC的解析式即可.
    【详解】
    (1)由图可知:点纵坐标为0,将代人,得,
    所以点坐标为
    B点横坐标为,将代入得,
    所以点坐标为;
    (2)∵A(4,0),B(0,3)
    ∴AO=4,BO=3,

    点坐标为
    设过点的一次函数的解析式为,
    将A(4,0),C(0,-2)分别代入,得,
    解得,,
    经过点和的一次函数的解析式为
    此题主要考查了一次函数解析式以及与坐标轴交点的求法,熟练掌握待定系数法是解题的关键.
    18、4或
    【解析】
    分5是斜边长、5是直角边长两种情况,根据勾股定理计算即可.
    【详解】
    解:当5是斜边长时,第三边长,
    当5是直角边长时,第三边长,
    则第三边长为4或.
    本题考查的是勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 (1,−4)
    【解析】
    根据反比例函数图象上点的坐标特征,正比例函数与反比例函数的两交点坐标关于原点对称.
    【详解】
    ∵反比例函数是中心对称图形,正比例函数与反比例函数的图象的两个交点关于原点对称,
    ∵一个交点的坐标为(−1,4),
    ∴它的另一个交点的坐标是(1,−4),
    故答案为:(1,−4).
    本题考查反比例函数图象的对称性,解题的关键是掌握反比例函数图象的对称性.
    20、x≠1
    【解析】
    ,x≠1
    21、14
    【解析】
    根据题意可得和的高是相等的,再根据,可得的高的比值,进而可得的比值,再计算DF的长.
    【详解】
    解:根据题意可得和的高是相等的






    故答案为14.
    本题主要考查三角形的相似比等于高的比,这是一个重要的考点,必须熟练掌握.
    22、150km/h
    【解析】
    假设快车的速度为a(km/h),慢车的速度为b(km/h).当两车相遇时,两车各自所走的路程之和就是甲乙两地的距离,由此列式4a+4b=900①,另外,由于快车到达乙地的时间比慢车到达甲地的时间要短,图中的(12,900)这个点表示慢车刚到达甲地,这时的两车距离等于两地距离,而x=12就是慢车正好到达甲地的时间,所以,12b=900②,①和②可以求出快车的速度.
    【详解】
    解:设快车的速度为a(km/h),慢车的速度为b(km/h),
    ∴4(a+b)=900,
    ∵慢车到达甲地的时间为12小时,
    ∴12b=900,
    b=75,
    ∴4(a+75)=900,
    解得:a=150;
    ∴快车的速度为150km/h.
    故答案为:150km/h.
    此题主要考查了一次函数的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系得出b的值.
    23、答案为:乙 ;
    【解析】
    【分析】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
    【详解】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定;乙的方差比较小,所以乙的成绩比较稳定.
    故答案为乙
    【点睛】本题考核知识点:方差.解题关键点:理解方差的意义.
    二、解答题(本大题共3个小题,共30分)
    24、(1)买60件需要花费:(元);(2)甲种文件夹每件8元,乙种文件夹每件6元.
    【解析】
    (1)设一次函数解析式,根据题意列方程组即可;(2)该文具店甲乙两种文件夹的单价分别是x元和(x-2)元,根据题意列方程组即可.
    【详解】
    解:(1)设一次函数,
    ∴,
    解得:,
    ∴一次函数的解析式为.
    ∴购买60件需要花费:(元).
    (2)设甲种文件夹每件元,则乙种文件夹每件元.
    解得:.
    经检验:是原方程的解,且符合题意,
    (元)
    答:甲种文件夹每件8元,乙种文件夹每件6元.
    本题考查了一次函数的应用,分式方程的应用,正确理解题意是解题的关键.
    25、(1);(2).
    【解析】
    (1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;
    (2)拟使用列表法求解,见解析.
    【详解】
    解:(1)小聪想从这4部数学名著中随机选择1部阅读,他选中《九章算术》的概率为;
    (2)将四部名著《周牌算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《周牌算经》为事件M,用列表法列举出从4部名著中选择2部所能产生的全部结果:
    由表中可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即AB,BA,
    ∴P(M)= .
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    26、 (1)见解析;(2)见解析;(3)DE=2;(4)DE=1.
    【解析】
    (1)根据两组对边分别平行的四边形是平行四边形进行证明即可得;
    (2)根据ABCD为平行四边形,可得AB=CD, AD=BC,再根据AECF为平行四边形,可得AF=CE,AE=FC,继而可得DE=BF,根据SSS即可证明△AFB≌△CED;
    (3)当DE=2时,AECF为菱形,理由:由AB=DC=2,∠ABC=∠EDC=60°可得△EDC为等边三角形,继而可得到AE=EC,根据邻边相等的平行四边形是菱形即可得;
    (4)当DE=1时,AECF为矩形,理由:若AECF为矩形则有∠DEC=90°,再根据DC=2,∠D=60°,则可得∠DCE=30°,继而可得DE=1.
    【详解】
    (1)∵为平行四边形,∴,即,
    又∵(已知),∴为平行四边形;
    (2)∵为平行四边形,∴, ,
    ∵为平行四边形,∴,
    ∴,
    在与中,

    ∴;
    (3)当时,为菱形,理由如下:
    ∵,
    ∴为等边三角形,,,即:,
    ∴平行四边形为菱形;
    (4)当时,为矩形,理由如下:
    若为矩形得:,
    ∵,,
    ∴,∴.
    本题考查了平行四边形的判定与性质、菱形的判定、矩形的判定与性质等,熟练掌握相关的性质与定理是解题的关键.
    题号





    总分
    得分
    第1部
    第2部
    A
    B
    C
    D
    A
    BA
    CA
    DA
    B
    AB
    CB
    DB
    C
    AC
    BC
    DC
    D
    AD
    BD
    CD

    相关试卷

    2024-2025学年广东省深圳市深圳实验学校九上数学开学经典试题【含答案】:

    这是一份2024-2025学年广东省深圳市深圳实验学校九上数学开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广东省汕尾市甲子镇瀛江学校数学九上开学监测模拟试题【含答案】:

    这是一份2024-2025学年广东省汕尾市甲子镇瀛江学校数学九上开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广东省广州白云广雅实验学校数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年广东省广州白云广雅实验学校数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map