搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年广西贺州市数学九上开学监测试题【含答案】

    2024-2025学年广西贺州市数学九上开学监测试题【含答案】第1页
    2024-2025学年广西贺州市数学九上开学监测试题【含答案】第2页
    2024-2025学年广西贺州市数学九上开学监测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年广西贺州市数学九上开学监测试题【含答案】

    展开

    这是一份2024-2025学年广西贺州市数学九上开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是( )
    A.方有两个相等的实数根B.方程有一根等于0
    C.方程两根之和等于0D.方程两根之积等于0
    2、(4分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )
    A.3B.4C.5D.6
    3、(4分)如图,四边形和四边形都是正方形,边在轴上,边在轴上,点在边上,反比例函数,在第二象限的图像经过点,则正方形与正方形的面积之差为( )

    A.6B.8C.10D.12
    4、(4分)一元二次方程2x(x+1)=(x+1)的根是()
    A.x=0B.x=1
    C.D.
    5、(4分)若关于x,y的二元一次方程组的解为,一次函数y=kx+b与y=mx+n的图象的交点坐标为( )
    A.(1,2)B.(2,1)C.(2,3)D.(1,3)
    6、(4分)若关于的一元二次方程有实数根,则应满足( )
    A.B.C.D.
    7、(4分)在四边形ABCD中,对角线AC、BD交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是( )
    A.AB=DC,AD=BCB.AD∥BC,AD=BC
    C.AB∥DC,AD=BCD.OA=OC,OD=OB
    8、(4分)下列说法正确的是( )
    A.了解某型导弹杀伤力的情况应使用全面调查
    B.一组数据3、6、6、7、9的众数是6
    C.从2000名学生中选200名学生进行抽样调查,样本容量为2000
    D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2甲=0.3,S2乙=0.4,则乙的成绩更稳定
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=BC,若EF=13,则线段AB的长为_____.
    10、(4分)在平面直角坐标系中,先将函数y=2x+3的图象向下平移3个单位长度,再沿y轴翻折,所得函数对应的解析式为_____.
    11、(4分)直线y1=k1x+b1(k1>0)与y2=k2x+b2(k2<0)相交于点(-2,0),且两直线与y轴围成的三角形面积为4,那么b1-b2等于________.
    12、(4分)若关于x的分式方程的解为非负数,则a的取值范围是_____.
    13、(4分)若,时,则的值是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)求点A,点B的坐标;
    (2)求△ABC的面积;
    (3)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.
    15、(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
    (1)求证:四边形BFCE是平行四边形;
    (2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.
    16、(8分)如图,在中,,,D是AC的中点,过点A作直线,过点D的直线EF交BC的延长线于点E,交直线l于点F,连接AE、CF.
    (1)求证:①≌;②;
    (2)若,试判断四边形AFCE是什么特殊四边形,并证明你的结论;
    (3)若,探索:是否存在这样的能使四边形AFCE成为正方形?若能,求出满足条件时的的度数;若不能,请说明理由.
    17、(10分)某通讯公司推出①、②两种收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.
    (1)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
    (2)何时两种收费方式费用相等?
    18、(10分)(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
    (2)结论应用:① 如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.
    ② 若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断 MN与EF是否平行?请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形ABCD边长为1,若以正方形的边AB为对角线作第二个正方形AEBO1,再以边BE为对角线作第三个正方形EFBO2……如此作下去,则所作的第n个正方形面积Sn=________
    20、(4分)如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,__.
    21、(4分)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是_____分.
    22、(4分)当x=______时,分式的值为0.
    23、(4分)如图,在矩形中,点在对角线上,过点作,分别交,于点,,连结,.若,,图中阴影部分的面积为,则矩形的周长为_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分)的关系如图所示,请结合图象,解答下列问题:
    (1)a= ,b= ,m= ;
    (2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;
    (3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?
    25、(10分)温度的变化是人们经常谈论的话题,请根据下图解决下列问题.
    (1)这一天的最高温度是多少?是在几时到达的?
    (2)这一天的温差是多少?从最低温度到最高温度经过多长时间?
    (3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?
    26、(12分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420 km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2 h,求汽车原来的平均速度.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    试题分析:根据已知得出方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,再判断即可.
    解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,
    把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,
    ∴方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,
    ∴1+(﹣1)=0,
    即只有选项C正确;选项A、B、D都错误;
    故选C.
    2、A
    【解析】
    作DE⊥AB于E,
    ∵AB=10,S△ABD =15,
    ∴DE=3,
    ∵AD平分∠BAC,∠C=90°,DE⊥AB,
    ∴DE=CD=3,
    故选A.
    3、B
    【解析】
    设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(a-b,a+b),根据E在反比例函数上得到(a+b)(a-b)=8,再求出S正方形AOBC=a2,S正方形CDEF=b2,即可求出面积之差.
    【详解】
    设正方形AOBC的边长为a,正方形CDEF的边长为b,
    则E(a-b,a+b),
    ∵E在反比例函数上
    ∴(a+b)(a-b)=8,即a2 -b2=8
    ∴S正方形AOBC-S正方形CDEF=a2-b2=8
    故选B.
    此题主要考查反比例函数的图像,解题的关键是根据题意找到E点坐标.
    4、D
    【解析】
    移项,提公因式法分解因式,即可求得方程的根.
    【详解】
    解:2x(x+1)=(x+1),
    2x(x+1)-(x+1)=0,
    (2x-1)(x+1)=0,
    则方程的解是:x1= ,x2=-1.
    故选:D.
    本题考查一元二次方程的解法-因式分解法,根据方程的特点灵活选用合适的方法是解题的关键.
    5、A
    【解析】
    函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.
    【详解】
    ∵关于x,y的二元一次方程组的解为,
    ∴一次函数y=kx+b与y=mx+n的图象的交点坐标为(1,2).
    故选A.
    本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
    6、B
    【解析】
    由方程有实数根,得到根的判别式的值大于等于0,列出关于A的不等式,求出不等式的解集即可得到a的范围.
    【详解】
    解:∵关于x的一元二次方程x2−2x+a=0有实数根,
    ∴△=4−4a≥0,
    解得:a≤1;
    故选:B.
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
    7、C
    【解析】
    根据平行四边形的判定方法逐一进行分析判断即可.
    【详解】
    A. AB=DC,AD=BC,根据两组对边分别平行的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;
    B. AD∥BC,AD=BC,根据一组对边平行且相等的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;
    C. AB∥DC,AD=BC,一组对边平行,另一组对边平行的四边形可能是平行四边形也可能是等腰梯形,故符合题意;
    D. OA=OC,OD=OB,根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意,
    故选C.
    本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
    8、B
    【解析】
    直接利用方差的意义以及全面调查与抽样调查、众数的定义分别分析得出答案.
    【详解】
    解:A、了解某型导弹杀伤力的情况应使用抽样调查,故此选项错误;
    B、一组数据3、6、6、7、9的众数是6,正确;
    C、从2000名学生中选200名学生进行抽样调查,样本容量为200,故此选项错误;
    D、甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2甲=0.3,S2乙=0.4,则甲的成绩更稳定,故此选项错误;
    故选B.
    此题主要考查了方差的意义以及全面调查与抽样调查、众数的定义,正确把握相关定义是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据三角形中位线定理得到,,根据平行四边形的性质求出,根据直角三角形的性质计算即可.
    【详解】
    解:点,分别是边,的中点,
    ,,

    ,又,
    四边形为平行四边形,

    ,点是边的中点,

    故答案为:1.
    本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
    10、y=-2x.
    【解析】
    利用平移规律得出平移后的关系式,再利用关于y轴对称的性质得出答案。
    【详解】
    将函数y=2x+3的图象向下平移3个单位长度,所得的函数是y=2x+3-3,即y=2x
    将该函数的图象沿y轴翻折后所得的函数关系式y=2(-x),即y=-2x,
    故答案为y=-2x.
    本题主要考查了一次函数图象与几何变换,正确得出平移后的函数关系式是解题的关键。
    11、1
    【解析】
    试题分析:根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得.
    试题解析:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,
    ∵△ABC的面积为1,
    ∴OA×OB+OA×OC=1,
    ∴,
    解得:b1﹣b2=1.
    考点:两条直线相交或平行问题.
    12、且
    【解析】
    分式方程去分母得:2(2x-a)=x-2,
    去括号移项合并得:3x=2a-2,
    解得:,
    ∵分式方程的解为非负数,
    ∴ 且 ,
    解得:a≥1 且a≠4 .
    13、1
    【解析】
    利用平方差公式求解即可求得答案.
    【详解】
    解:当,时,

    故答案为:1.
    此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用是解此题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)A(﹣4,0),B(2,0);(2)S△ABC=12;(3)当x=﹣2时,△ACP最大面积4
    【解析】
    (1)令y=0,解一元二次方程可得A,B坐标.
    (2)求出C点坐标可求,△ABC的面积.
    (3)作PD⊥AO交AC于D,设P的横坐标为t,用t表示PD和△ACP的面积,得到关于t的函数,根据二次函数的最值的求法,可求△ACP面积的最大值.
    【详解】
    解:(1)设y=0,则0=﹣x2﹣x+4
    ∴x1=﹣4,x2=2
    ∴A(﹣4,0),B(2,0)
    (2)令x=0,可得y=4
    ∴C(0,4)
    ∴AB=6,CO=4
    ∴S△ABC=×6×4=12
    (3)如图:作PD⊥AO交AC于D
    设AC解析式y=kx+b

    解得:
    ∴AC解析式y=x+4
    设P(t,﹣ t2﹣t+4)则D(t,t+4)
    ∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2
    ∴S△ACP=PD×4=﹣(t+2)2+4
    ∴当x=﹣2时,△ACP最大面积4
    本题主要考查二次函数综合题,重在基础知识考查,熟悉掌握是关键.
    15、(1)证明见试题解析;(2)1.
    【解析】
    试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.
    试题解析:(1)∵AB=DC,∴AC=DB,
    在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
    ∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,
    ∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,
    ∴当BE=1时,四边形BFCE是菱形,
    故答案为1.
    【考点】
    平行四边形的判定;菱形的判定.
    16、(1)①证明见解析;②证明见解析;(2)四边形AFCE是矩形,证明见解析;(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形,证明见解析.
    【解析】
    (1)①根据中点和平行即可找出条件证明全等.
    ②由全等的性质可以证明出四边形AFCE是平行四边形,即可得到AE=FC.
    (2)根据和可证明出△DCE为等边三角形,进而得到AC=EF即可证明出四边形AFCE是矩形.
    (3)根据四边形AFCE是平行四边形,且EF⊥AC,得到四边形AFCE是菱形.由AC=BC,证出△DCE是等腰直角三角形即可得到AC=EF,进而证明出菱形AFCE是正方形.所以存在这样的.
    【详解】
    (1)①
    ∵AF∥BE,∴∠FAD=∠ECD,∠AFD=∠CED.
    ∵AD=CD,∴△ADF≌△CDE.
    ②由△ADF≌△CDE,∴AF=CE.
    ∵AF∥BE,∴四边形AFCE是平行四边形,∴AE=FC.
    (2)四边形AFCE是矩形.
    ∵四边形AFCE是平行四边形,∴AD=DC,ED=DF.
    ∵AC=BC,∴∠BAC=∠B=30°,∴∠ACE=60°.
    ∵∠CDE=2∠B=60°,∴△DCE为等边三角形,∴CD=ED,∴AC=EF,∴四边形AFCE是矩形.
    (3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.
    ∵四边形AFCE是平行四边形,且EF⊥AC,∴四边形AFCE是菱形.
    ∵AC=BC,∴∠BAC=∠B=22.5°,∴∠DCE=2∠B=45°,∴△DCE是等腰直角三角形,即DC=DE,∴AC=EF,∴菱形AFCE是正方形.
    即当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.
    此题考查三角形全等,特殊平行四边形的判定及性质,难度中等.
    17、(1);;(2)300分钟.
    【解析】
    (1)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;
    (2)根据(1)的结论列方程解答即可.
    【详解】
    解:(1)设,,由题意得:将,分别代入即可:



    故所求的解析式为;;
    (2)当通讯时间相同时,得,解得.
    答:通话300分钟时两种收费方式费用相等.
    本题考查的是用一次函数解决实际问题,熟悉相关性质是解题的关键.
    18、(1)AB∥CD.理由见解析;(1)①证明见解析;②MN∥EF.理由见解析.
    【解析】
    (1)分别过点C,D,作CG⊥AB,DH⊥AB,然后证明四边形CGHD为平行四边形后可得AB∥CD;(1)①连结MF,NE. 设点M的坐标为(x1,y1),点N的坐标为(x1,y1).利用反比例函数的性质结合条件得出S△EFM=S△EFN.可得MN∥EF.(3)MN∥EF. 证明与①类似.
    【详解】
    解:(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,
    则∠CGA=∠DHB=90°.
    ∴CG∥DH.
    ∵△ABC与△ABD的面积相等,
    ∴CG=DH.
    ∴ 四边形CGHD为平行四边形.
    ∴AB∥CD.
    (1)①连结MF,NE.
    设点M的坐标为(x1,y1),点N的坐标为(x1,y1).
    ∵ 点M,N在反比例函数(k>0)的图象上,
    ∴,
    ∵ME⊥y轴,NF⊥x轴
    ∴OE=y1,OF=x1.
    ∴S△EFM=
    S△EFN=.
    ∴S△EFM=S△EFN.
    由(1)中的结论可知:MN∥EF.
    ② MN∥EF. 证明与①类似,略.
    本题考查1.平行四边形的判定与性质1.反比例函数的性质,综合性较强.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    首先写出AB的长,再写出AE的长,再写出EF的长,从而来寻找规律,写出第n个正方形的长,再计算面积即可.
    【详解】
    根据题意可得AB=1,则正方形ABCD的面积为1
    AE= ,则正方形AEBO1面积为
    EF= ,则正方形EFBO2面积为
    因此可得第n个正方形面积为
    故答案为
    本题主要考查正方形的性质,关键在于根据图形写出规律,应当熟练掌握.
    20、或1
    【解析】
    当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
    【详解】
    当△CEB′为直角三角形时,有两种情况:
    ①当点B′落在矩形内部时,如图1所示,
    连结AC,
    在Rt△ABC中,AB=1,BC=12,
    ∴AC==13,
    ∵将ΔABE沿AE折叠,使点B落在点B′处,
    ∴∠AB′E=∠B=90°,
    当△CEB′为直角三角形时,只能得到∠EB′C=90°,
    ∴点A、B′、C共线,即将ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,设:,则,,

    由勾股定理得:,
    解得:;
    ②当点B′落在AD边上时,如图2所示,
    此时ABEB′为正方形,∴BE=AB=1,
    综上所述,BE的长为或1,
    故答案为:或1.
    本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.
    21、1
    【解析】
    先根据平均数公式分别求出全班38名学生的总分,去掉A、B、C、D、E五人的总分,相减得到A、B、C、D、E五人的总分,再根据实际情况得到C的成绩.
    【详解】
    解:设A、B、C、D、E分别得分为a、b、c、d、e.
    则[38×67﹣(a+b+c+d+e)]÷(38﹣5)=62,
    因此a+b+c+d+e=500分.
    由于最高满分为1分,因此a=b=c=d=e=1,即C得1分.
    故答案是:1.
    利用了平均数的概念建立方程.注意将A、B、C、D、E五人的总分看作一个整体求解.
    22、1.
    【解析】
    直接利用分式的值为零则分子为零,分母不为零进而得出答案.
    【详解】
    解:∵分式的值为0,
    ∴1x-4=0且x-1≠0,
    解得:x=1.
    故答案为:1.
    本题考查分式的值为零的条件,正确把握分式的定义是解题关键.
    23、
    【解析】
    作PM⊥AD于M,交BC于N,进而得到四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,继而可证明S△PEB=S△PFD,然后根据勾股定理及完全平方公式可求,,进而求出矩形的周长.
    【详解】
    解:作PM⊥AD于M,交BC于N,
    则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
    ∴AM=PE=BN,AE=MP=DF,MD=PF=NC,BE=PN=FC,
    S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,
    ∴S△DFP=S△PBE,且S△DFP+S△PBE=9,
    ∴,且,
    ∴,
    即,.
    ∵,,
    ∴,,
    ∴,
    ∴矩形ABCD的周长= 2=.
    故答案为:.
    本题考查了矩形的性质,勾股定理,完全平方公式,三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.
    二、解答题(本大题共3个小题,共30分)
    24、(1)a=10,b=15,m=200;(2)750米;(3)17.5或20分.
    【解析】
    (1)根据时间=路程÷速度,即可求出a的值,结合休息的时间为5分钟,即可求出b的值,再根据速度=路程÷时间,求出m的值;
    (2)根据数量关系找出线段BC、OD所在的直线函数解析式,联立方程即可求出即可;
    (3)根据(2)结论,结合二者之间相距100米,即可得到关于x的绝对值的关系式,然后分类求解即可.
    【详解】
    (1)a=1500,b=a+5=15,m=(3000-1500)(22.5-15)=200
    故答案为10,15,200;
    (2)∵B(15,1500),C(22.5,3000)
    ∴BC段关系式为:
    ∵小军的速度是120米/分,∴OD段关系式为:
    相遇时,即,即120x=200x-1500,
    解得:x=18.75 ,
    此时:=2250 ,
    距离图书馆:3000-2250=750(米),
    (3)由题意可得:||=100,
    所以:当=100时,解得x=20 ,
    当时,解得x=17.5 .
    ∴爸爸出发17.5分钟或20分钟时,自第二次出发至到达图书馆前与小军相距100米
    25、(1)这一天的最高温度是37℃,是在15时到达的;(2)温差为,经过的时间为时;(3)从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.
    【解析】
    (1)观察图象,可知最高温度为37℃,时间为15时;
    (2)由(1)中得出的最高温度-最低温度即可求出温差,也可求得经过的时间;
    (3)观察图象可求解.
    【详解】
    解:(1)根据图像可以看出:这一天的最高温度是37℃,,是在15时到达的;
    (2)∵最高温是15时37℃,最低温是3时23℃,
    ∴温差为: ,
    则经过的时间为:: (时);
    (3)观察图像可知:从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.
    本题考查了函数的图象,属于基础题,要求同学们具备一定的观察图象能力,能从图象中获取解题需要的信息.
    26、2 km/h
    【解析】
    求的汽车原来的平均速度,路程为410km,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了1h.等量关系为:原来时间﹣现在时间=1.
    【详解】
    设汽车原来的平均速度是x km/h,根据题意得:
    ,解得:x=2.
    经检验:x=2是原方程的解.
    答:汽车原来的平均速度2km/h.
    题号





    总分
    得分

    相关试卷

    2024-2025学年广西梧州市岑溪市数学九上开学监测试题【含答案】:

    这是一份2024-2025学年广西梧州市岑溪市数学九上开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广西省贺州市九上数学开学联考模拟试题【含答案】:

    这是一份2024-2025学年广西省贺州市九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广西省崇左市名校数学九上开学检测模拟试题【含答案】:

    这是一份2024-2025学年广西省崇左市名校数学九上开学检测模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map