2024-2025学年广西南宁市第四十七中学数学九上开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于( )
A.B.C.D.
2、(4分)下列各式不能用公式法分解因式的是( )
A.B.
C.D.
3、(4分)在平面直角坐标系中,点P(2,﹣3)关于y轴对称的点的坐标是( )
A.(﹣2,﹣3)B.(﹣2,3)C.(2,3)D.(2,﹣3)
4、(4分)如图,梯子靠在墙上,梯子的底端到墙根的距离为米,梯子的顶端到地面距离为米.现将梯子的底端向外移动到,使梯子的底端到墙根的距离等于米,同时梯子的顶端下降至,那么的值( )
A.小于米B.大于米C.等于米D.无法确定
5、(4分)如图,四边形是菱形,经过点、、,与相交于点,连接、.若,则的度数为( )
A.B.C.D.
6、(4分)如图,在平行四边形ABCO中,A(1,2),B(5,2),将平行四边形绕O点逆时针方向旋转90°得平行四边形ABCO,则点B的坐标是( )
A.(-2,4)B.(-2,5)C.(-1,5)D.(-1,4)
7、(4分)若分式在实数范围内有意义,则实数x的取值范围是( )
A.B.C.D.
8、(4分)已知直线y=-x+4与y=x+2如图所示,则方程组的解为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在△ABC ,∠BAC 90, AB AC 4, O 是 BC 的中点, D 是腰 AB 上一动点,把△DOB 沿 OD 折叠得到 △DOB' ,当 ∠ADB' 45 时, BD 的长度为_____.
10、(4分)如图,已知A点的坐标为,直线与y轴交于点B,连接AB,若,则____________.
11、(4分)如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD交于点E,若CE=2AE=4,则DC的长为________.
12、(4分)如图,中,点是边上一点,交于点,若,,的面积是1,则的面积为_________.
13、(4分)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
15、(8分)如图,在中,,是中线,是的中点,过点作交的延长线于,连接.求证:四边形是菱形.
16、(8分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
17、(10分)如图,为修通铁路凿通隧道,量出,,,,若每天凿隧道,问几天才能把隧道凿通?
18、(10分)如图,在平行四边形ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)当∠A=50°,∠BOD=100°时,判断四边形BECD的形状,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,四边形ABCD中,AB∥CD,AB=8,DC=4,点M、N分别为边AB、DC的中点,点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,到达点A后立即原路返回,点P到达点C后点Q同时停止运动,设点P、Q运动的时问为t秒,当以点M、N、P、Q为顶点的四边形为平行四边形时,t的值为________。
20、(4分)三角形的各边分别为8cm 、10cm和12cm ,连结各边中点所成三角形的周长=_____
21、(4分)已知在同一坐标系中,某正比例函数与某反比例函数的图像交于 A,B 两点,若点 A 的坐标为(-1,4), 则点 B 的坐标为___.
22、(4分)关于x的一元二次方程x2+4x+2k﹣1=0有两个实数根,则k的取值范围是_____.
23、(4分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴正半轴上,边AB、OA(AB>OA)的长分别是方程x−11x+24=0的两个根,D是AB上的一动点(不与A.B重合).AB=8,OA=3.若动点D满足△BOC与AOD相似,则直线OD的解析式为____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知,点在上,点在上.
(1)请用尺规作图作出的垂直平分线,交于点,交于点;(保留作图痕迹,不写作法);
(2)连结,求证四边形是菱形.
25、(10分)如图1,在中,,,点,分别在边AC,BC上,,连接BD,点F,P,G分别为AB,BD,DE的中点.
(1)如图1中,线段PF与PG的数量关系是 ,位置关系是 ;
(2)若把△ CDE绕点C逆时针方向旋转到图2的位置,连接AD,BE,GF,判断△ FGP的形状,并说明理由;
(3)若把△ CDE绕点C在平面内自由旋转,AC=8,CD=3,请求出△FGP面积的最大值.
26、(12分)水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.
(1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?
(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.
试题解析:∵四边形MBND是菱形,
∴MD=MB.
∵四边形ABCD是矩形,
∴∠A=90°.
设AB=a,AM=b,则MB=2a-b,(a、b均为正数).
在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,
解得a=,
∴MD=MB=2a-b=,
∴.
故选A.
考点:1.矩形的性质;2.勾股定理;3.菱形的性质.
2、C
【解析】
根据公式法有平方差公式、完全平方公式,可得答案.
【详解】
A、x2-9,可用平方差公式,故A能用公式法分解因式;
B、-a2+6ab-9 b2能用完全平方公式,故B能用公式法分解因式;
C、-x2-y2不能用平方差公式分解因式,故C正确;
D、x2-1可用平方差公式,故D能用公式法分解因式;
故选C.
本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.
3、A
【解析】
根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
【详解】
解:点P(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3),
故选:A.
此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.
4、A
【解析】
由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.
【详解】
解:在直角三角形AOB中,因为OA=2,OB=7
由勾股定理得:AB=,
由题意可知AB=A′B′=,
又OA′=3,根据勾股定理得:OB′=2,
∴BB′=7-2<1.
故选A.
本题考查了勾股定理的应用,解题时注意勾股定理应用的环境是在直角三角形中.
5、C
【解析】
由菱形的性质求出∠ACB=50°,由边形是圆内接四边形可求出∠AEB=80°,然后利用三角形外角的性质即可求出的度数.
【详解】
∵四边形是菱形,,
∴,
∵四边形是圆内接四边形,
∴,
∴,
故选:C.
本题考查了菱形的性质,圆内接四边形的性质,三角形外角的性质. 圆内接四边形的性:①圆内接四边形的对角互补,②圆内接四边形的外角等于它的内对角,③圆内接四边形对边乘积的和,等于对角线的乘积.
6、B
【解析】
直接利用旋转的性质B点对应点到原点距离相同,进而得出坐标.
【详解】
解:∵将▱ABCO绕O点逆时针方向旋转90°到▱A′B′C′O的位置,B(5,2),
∴点B′的坐标是:(-2,5).
故选:B.
此题主要考查了平行四边形的性质以及旋转的性质,正确掌握平行四边形的性质是解题关键.
7、B
【解析】
根据分式分母不能等于0即可得出答案
【详解】
解:∵分式在实数范围内有意义
∴
解得:
故选B
本题考查分式在实数范围内有意义,比较简单,要熟练掌握
8、B
【解析】
二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线y=-x+4与y=x+2的交点坐标.
故选B
点睛:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
由勾股定理可得,由折叠的性质和平行线的性质可得,即可求的长.
【详解】
如图,
,,
,,
是的中点,
,
把沿折叠得到,
,,,
,
,
,
,
.
故答案为.
本题考查了翻折变换,直角三角形的性质,熟练运用折叠的性质是本题的关键.
10、2
【解析】
如图,设直线y=x+b与x轴交于点C,由直线的解析式是y=x+b,可得OB=OC=b,继而得∠BCA=45°,再根据三角形外角的性质结合∠α=75°可求得∠BAC=30°,从而可得AB=2OB=2b,根据点A的坐标可得OA的长,在Rt△BAO中,根据勾股定理即可得解.
【详解】
设直线y=x+b与x轴交于点C,如图所示,
∵直线的解析式是y=x+b,
∴OB=OC=b,则∠BCA=45°;
又∵∠α=75°=∠BCA+∠BAC=45°+∠BAC,
∴∠BAC=30°,
又∵∠BOA=90°,
∴AB=2OB=2b,
而点A的坐标是(,0),
∴OA=,
在Rt△BAO中,AB2=OB2+OA2,
即(2b)2=b2+()2,
∴b=2,
故答案为:2.
本题考查了一次函数的性质、勾股定理的应用、三角形外角的性质等,求得∠BAC=30°是解答本题的关键.
11、
【解析】
过A点作A⊥BD于F,根据平行线的判定可得AF∥BC,根据含30度直角三角形的性质可得BC=AB,根据三角形内角和可得∠ADB=∠BAD,根据等腰三角形的性质可得BD=AB,从而得到BC=BD,在Rt△CBE中,根据含30度直角三角形的性质可得BC,在Rt△CBD中,根据等腰直角三角形的性质可得CD.
【详解】
过A点作A⊥BD于F,
∵∠DBC=90°,
∴AF∥BC,
∵CE=2AE,
∴AF=BC,
∵∠ABD=30°,
∴AF=AB,
∴BC=AB,
∵∠ABD=30°,∠ADB=75°,
∴∠BAD=75°,∠ACB=30°,
∴∠ADB=∠BAD,
∴BD=AB,
∴BC=BD,
∵CE=4,
在Rt△CBE中,BC=CE=6,
在Rt△CBD中,CD=BC=6.
故答案为:6.
此题考查了含30度直角三角形的性质,以及等腰三角形的判定和性质,得到Rt△CBE是含30度直角三角形,以及Rt△CBD是等腰直角三角形是解本题的关键.
12、
【解析】
利用△BFE∽△DFA,可求出△DFA的面积,再利用来求出△BAF的面积,即可得△ABD的面积,它的2倍即为的面积.
【详解】
解:中,BE∥AD,
∴△BFE∽△DFA,
∴.
而△BEF的面积是1,
∴S△DFA=.
又∵△BFE∽△DFA
∴.
∵,即可知S△BAF=.
而S△ABD=S△BAF+S△DFA
∴S△AFD=.
∴▱ABCD的面积=×2=.
故答案为.
本题考查的是利用相似形的性质求面积,把握相似三角形的面积比等于相似比的平方是解决本题的重点.
13、
【解析】
根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.
【详解】
解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,
∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,
即D为CE中点,
∵EF⊥BC,∴∠EFC=90°,
∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,
∵EF=3,∴CE=2,∴AB=,
故答案为.
本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析(2)
【解析】
试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
试题解析:(1)证明:因为四边形ABCD是矩形,
所以AD∥BC,
所以∠PDO=∠QBO,
又因为O为BD的中点,
所以OB=OD,
在△POD与△QOB中,
∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
所以△POD≌△QOB,
所以OP=OQ.
(2)解:PD=8-t,
因为四边形PBQD是菱形,
所以PD=BP=8-t,
因为四边形ABCD是矩形,
所以∠A=90°,
在Rt△ABP中,
由勾股定理得:,
即,
解得:t=,
即运动时间为秒时,四边形PBQD是菱形.
考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
15、见解析.
【解析】
根据AAS证△AFE≌△DBE,推出AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是平行四边形,再通过直角三角形斜边上的中线等于斜边的一半,证明AD=DC,从而证明ADCF是菱形..
【详解】
证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
∴AF=DB.
∵AD是BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90∘,AD是BC边上的中线,
∴AD=DC=BC,
∴ADCF是菱形.
本题考查菱形的判定,直角三角形斜边上的中线.读题根据已知题意分析图中线段、角之间的关系,从而选择合适的定理去证明四边形ADCE为菱形.
16、(1)证明见解析;(2)BC=2CD,理由见解析.
【解析】
分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
详解:(1)∵四边形ABCD是矩形,
∴AB∥CD,
∴∠FAE=∠CDE,
∵E是AD的中点,
∴AE=DE,
又∵∠FEA=∠CED,
∴△FAE≌△CDE,
∴CD=FA,
又∵CD∥AF,
∴四边形ACDF是平行四边形;
(2)BC=2CD.
证明:∵CF平分∠BCD,
∴∠DCE=45°,
∵∠CDE=90°,
∴△CDE是等腰直角三角形,
∴CD=DE,
∵E是AD的中点,
∴AD=2CD,
∵AD=BC,
∴BC=2CD.
点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
17、10天才能把隧道凿通
【解析】
由题意可得∠C为90°,在直角△ABC中,已知AB,BC根据勾股定理即可求AC,即可得出需要的天数.
【详解】
解:∵,,
∴.
∵在中,,,
∴.
∴需要天数为(天).
答:10天才能把隧道凿通.
故答案为:10天才能把隧道凿通.
本题考查勾股定理在实际生活中的应用,解题的关键是正确的计算AC的长度.
18、 (1)证明见解析;(2)四边形BECD是矩形.
【解析】
(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;
(2)结论:四边形BECD是矩形.由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.
【详解】
(1)证明:∵四边形ABCD为平行四边形,
∴AB∥DC,AB=CD,
∴∠OEB=∠ODC,
又∵O为BC的中点,
∴BO=CO,
在△BOE和△COD中,
,
∴△BOE≌△COD(AAS);
∴OE=OD,
∴四边形BECD是平行四边形;
(2)解:若∠A=50°,∠BOD=100°时,四边形BECD是矩形.
理由如下:∵四边形ABCD是平行四边形,
∴∠BCD=∠A=50°,
∵∠BOD=∠BCD+∠ODC,
∴∠ODC=100°﹣50°=50°=∠BCD,
∴OC=OD,
∵BO=CO,OD=OE,
∴DE=BC,
∵四边形BECD是平行四边形,
∴四边形BECD是矩形;
此题主要考查了矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1或1.5或3.5
【解析】
利用线段中点的定义求出DN,BM的长,再根据两点的运动速度及运动方向,分情况讨论:当0<t≤2时,PN=2-t,MQ=4-3t或MQ=3t-4;当2<t≤4时PN=t-2,MQ=12-3t,然后根据平行四边形的判定定理,由题意可知当PN=MQ,以点M、N、P、Q为顶点的四边形为平行四边形,分别建立关于t的方程,分别求解即可
【详解】
解:∵点M、N分别为边AB、DC的中点,
∴DN=DC= ×4=2,
BM=AB=×8=4;
∵点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,点P到达点C后点Q同时停止运动,
∴DP=t,BQ=3t,
当0<t≤2时,PN=2-t,MQ=4-3t或MQ=3t-4
当2<t≤4时PN=t-2,MQ=12-3t
∵ AB∥CD
∴PN∥MQ;
∴当PN=MQ,以点M、N、P、Q为顶点的四边形为平行四边形,
∴2-t=4-3t,或2-t=3t-4,或t-2=12-3t,
解之:t=1或t=1.5或t=3.5.
故答案为:t=1或1.5或3.5.
本题考查平行四边形的判定和性质,一元一次方程等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
20、15 cm
【解析】
由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.
【详解】
如图,
D,E,F分别是△ABC的三边的中点,
则DE=AC,DF=BC,EF=AB,
∴△DEF的周长=DE+DF+EF= (AC+BC+AB)= ×(8+10+12)cm=15cm,
故答案为15 cm.
本题考查三角形中位线定理,解题的关键是掌握三角形中位线定理.
21、 (1,−4)
【解析】
根据反比例函数图象上点的坐标特征,正比例函数与反比例函数的两交点坐标关于原点对称.
【详解】
∵反比例函数是中心对称图形,正比例函数与反比例函数的图象的两个交点关于原点对称,
∵一个交点的坐标为(−1,4),
∴它的另一个交点的坐标是(1,−4),
故答案为:(1,−4).
本题考查反比例函数图象的对称性,解题的关键是掌握反比例函数图象的对称性.
22、k≤
【解析】
根据方程有两个实数根可以得到根的判别式,进而求出的取值范围.
【详解】
解:由题意可知:
解得:
故答案为:
本题考查了根的判别式的逆用---从方程根的情况确定方程中待定系数的取值范围,属中档题型,解题时需注意认真理解题意.
23、y=−x
【解析】
分两种情况:△BOC∽△DOA和△BOC∽△ODA,由相似三角形的对应边成比例求得点D的坐标,由待定系数法求得直线OD的解析式;
【详解】
若△BOC∽△DOA.
则
即
所以AD= ,
若△BOC∽△ODA,可得AD=8(与题意不符,舍去)
设直线OD解析式为y=kx,则3=−k,
即k=− ,
直线OD的解析式为y=−x;
此题考查一次函数的性质,解题关键在于利用相似三角形的性质求解.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)详见解析.
【解析】
(1)按照尺规作图的步骤作出图形即可;
(2)证明AC垂直平分EF,则根据对角线互相垂直平分的四边形为菱形得到四边形AECF是菱形.
【详解】
解:(1)如图,就是所求作的的垂直平分线,
(2)证明:∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠AFE=∠CEF,
∵EF垂直平分AC,
∴EA=EC,EF⊥AC,
∴∠CEF=∠AEF,
∴∠AFE=∠AEF,
∴AE=AF,
∴AC垂直平分EF,
∴四边形AECF是菱形.
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.
25、1)PF=PG PF⊥PG;(2)△FGP是等腰直角三角形,理由见解析;(3)S△PGF最大=.
【解析】
(1)根据等腰三角形的性质和三角形的中位线定理解答即可;
(2)由旋转知,∠ACD=∠BCE,进一步证明△CAD≌△CBE,再利用全等三角形的判定和性质以及三角形中位线定理解答;
(3)由(2)知,△FGP是等腰直角三角形,PG=PF=AD,PG最大时,△FGP面积最大,进而解答即可.
【详解】
解(1)PF=PG PF⊥PG;
如图1,∵在△ABC中,AB=BC,点,分别在边AC,BC上,且CD=CE,
∴AC-CD=BC-CE,即AD=BE,点F、P、G分别为DE、DC、BC的中点,
∴PF=AB,PG=CE,
∴PF=PG,
∵点F、P、G分别为DE、DC、BC的中点,
∴PG//BE,PF//AD,
∴∠PFB=∠A,∠DPG=∠DBC,
∴∠FPG=∠DPF+∠DPG
=∠PFB+∠DBA+∠DPG
=∠A+∠DBA+∠DBC
=∠A+∠ABC,
∵∠ABC+∠ACB=180°-∠C
∴∠FPG=180°-90°=90°,PF⊥PG;
(2)△FGP是等腰直角三角形
理由:由旋转知,∠ACD=∠BCE,
∵AC=BC,CD=CE,
∴△CAD≌△CBE(SAS),
∴∠CAD=∠CBE,AD=BE,
利用三角形的中位线得,PG=BE,PF=AD,
∴PG=PF,
∴△FGP是等腰三角形,
利用三角形的中位线得,PG∥CE,
∴∠DPG=∠DBE,
利用三角形的中位线得,PF∥AD,
∴∠PFB=∠DAB,
∵∠DPF=∠DBA+∠PNB=∠DBA+∠DAB,
∴∠GPF=∠DPG+∠DPF=∠DBE+∠DBA+∠DAB
=∠ABE+∠DAB=∠CBA+∠CBE+∠DAB
=∠CBA+∠CAD+∠DAB=∠CBA+∠CAB,
∵∠ACB=90°,
∴∠CBA+∠CAB=90°,
∴∠GPF=90°,
∴△FGP是等腰直角三角形;
(3)由(2)知,△FGP是等腰直角三角形,PG=PF=AD,
∴PG最大时,△FGP面积最大,
∴点D在AC的延长线上,
∴AD=AC+CD=11,
∴PG=,
∴S△PGF最大=PG2=
此题属于几何变换综合题,关键是根据三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质进行解答.
26、(1)6120元 (2)答应涨价为5元.
【解析】
【分析】(1)根据总毛利润=每千克能盈利18元×卖出的数量即可计算出结果;
(2)设涨价x元,则日销售量为500-20x,根据总毛利润=每千克能盈利×卖出的数量即可列方程求解.
【详解】(1)(500-8×20)×18=6120元,
答:每天的总毛利润是6120元;
(2) 设每千克涨元
,
,
,
,
(舍) ,
又由于顾客得到实惠,答应涨价为5元.
【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
题号
一
二
三
四
五
总分
得分
2024-2025学年广西南宁市第十八中学九上数学开学考试模拟试题【含答案】: 这是一份2024-2025学年广西南宁市第十八中学九上数学开学考试模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西来宾市部分中学数学九上开学统考试题【含答案】: 这是一份2024-2025学年广西来宾市部分中学数学九上开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西桂林市宝贤中学数学九上开学检测模拟试题【含答案】: 这是一份2024-2025学年广西桂林市宝贤中学数学九上开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。