2024-2025学年贵州省黔西南州望谟六中学九上数学开学质量检测模拟试题【含答案】
展开
这是一份2024-2025学年贵州省黔西南州望谟六中学九上数学开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=7,EF=3,则BC的长为( )
A.9B.10C.11D.12
2、(4分)如图,中,,的平分线交于点,连接,若,则的度数为
A.B.C.D.
3、(4分)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( ).
A.50元,30元B.50元,40元
C.50元,50元D.55元,50元
4、(4分)等腰三角形的底边和腰长分别是10和12,则底边上的高是( )
A.13B.8C.D.
5、(4分)如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是( )
A.16B.18C.19D.21
6、(4分)分式为0的条件是( )
A.B.C.D.
7、(4分)已知关于的方程是一元二次方程,则的取值范围是( )
A.B.C.D.任意实数
8、(4分)下列命题是假命题的是( )
A.菱形的对角线互相垂直平分
B.有一斜边与一直角边对应相等的两直角三角形全等
C.有一组邻边相等且垂直的平行四边形是正方形
D.对角线相等的四边形是矩形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)反比例函数与一次函数的图像的一个交点坐标是,则 =________.
10、(4分)如图1,在菱形中,,点在的延长线上,在的角平分线上取一点(含端点),连结并过点作所在直线的垂线,垂足为.设线段的长为,的长为,关于的函数图象及有关数据如图2所示,点为图象的端点,则时,_____,_____.
11、(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件________使其成为菱形(只填一个即可).
12、(4分)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是______.
13、(4分)若关于x的分式方程=有增根,则m的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形ABCD中,AB=AD=3,DC=4,∠A=60°,∠D=150°,试求BC的长度.
15、(8分)用一条长48cm的绳子围矩形,
(1)怎样围成一个面积为128cm2的矩形?
(2)能围成一个面积为145cm2的矩形吗?为什么?
16、(8分)某市建设全长540米的绿化带,有甲、乙两个工程队参加.甲队平均每天绿化的长度是乙队的1.5倍.若由一个工程队单独完成绿化,乙队比甲队对多用6天,分别求出甲、乙两队平均每天绿化的长度。
17、(10分)阅读:所谓勾股数就是满足方程的正整数解,即满足勾股定理的三个正整数构成的一组数我国古代数学专著九章算术一书,在世界上第一次给出该方程的解为:,,,其中,m,n是互质的奇数.应用:当时,求一边长为8的直角三角形另两边的长.
18、(10分)已知等腰三角形的周长是,底边是腰长的函数。
(1)写出这个函数的关系式;
(2)求出自变量的取值范围;
(3)当为等边三角形时,求的面积。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.
20、(4分)计算=__________.
21、(4分)如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.
22、(4分)已知,则 ___________ .
23、(4分)如图,点A,B在函数的图象上,点A、B的横坐标分别为、3,则△AOB的面积是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了倡导节约能源,自某日起,我国对居民用电采用阶梯电价,为了使大多数家庭不增加电费支出,事前就需要了解居民全年月平均用电量的分布情况,制订一个合理的方案.某调查人员随机调查了市户居民全年月平均用电量(单位:千瓦时)数据如下:
得到如下频数分布表:
画出频数分布直方图,如下:
(1)补全数分布表和率分布直方图
(2)若是根据数分布表制成扇形统计图,则不低于千瓦时的部分圆心角的度数为_____________;
(3)若市的阶梯电价方案如表所示,你认为这个阶梯电价方案合理吗?
25、(10分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.
(1)求证:OM=ON;
(2)若正方形ABCD的边长为6,OE=EM,求MN的长.
26、(12分)潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.
(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?
(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分析:先证明AB=AF=7,DC=DE,再根据EF=AF+DE﹣AD求出AD,即可得出答案.
详解:∵四边形ABCD是平行四边形,∴AB=CD=7,BC=AD,AD∥BC.
∵BF平分∠ABC交AD于F,CE平分∠BCD交AD于E,∴∠ABF=∠CBF=∠AFB,∠BCE=∠DCE=∠CED,∴AB=AF=7,DC=DE=7,∴EF=AF+DE﹣AD=7+7﹣AD=3,∴AD=1,∴BC=1.
故选C.
点睛:本题考查了平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,属于常见题,中考常考题型.
2、D
【解析】
由平行四边形的对边相互平行和平行线的性质得到∠ABC=80°;然后由角平分线的性质求得∠EBC=∠ABC=40°;最后根据等腰三角形的性质解答.
【详解】
四边形是平行四边形,
,.
.
又,
.
是的平分线,
.
又,
.
.
故选.
考查了平行四边形的性质,此题利用了平行四边形的对边相互平行和平行四边形的对角相等的性质.
3、C
【解析】
1出现了3次,出现的次数最多,
则众数是1;
把这组数据从小到大排列为:20,25,30,1,1,1,55,
最中间的数是1,
则中位数是1.
故选C.
4、D
【解析】
先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.
【详解】
解:作底边上的高并设此高的长度为x,
由等腰三角形三线合一的性质可得高线平分底边,
根据勾股定理得:52+x2=122,
解得x=
本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线.然后根据勾股定理即可求出底边上高的长度.
5、C
【解析】
由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE求面积.
【详解】
∵AE⊥BE,且AE=3,BE=4,
∴在Rt△ABE中,AB3=AE3+BE3=35,
∴S阴影部分=S正方形ABCD﹣S△ABE=AB3﹣×AE×BE=35﹣×3×4=3.
故选C.
考点:3.勾股定理;3.正方形的性质.
6、C
【解析】
根据分式的分子等于0求出m即可.
【详解】
由题意得:2m-1=0,解得,此时,
故选:C.
此题考查依据分式值为零的条件求未知数的值,正确掌握分式值为零的条件:分子为零,分母不为零.
7、A
【解析】
利用一元二次方程的定义求解即可.
【详解】
解:∵关于x的方程是一元二次方程,
∴m+1≠0,即m≠−1,
故选:A.
此题主要考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.
8、D
【解析】
试题分析:根据菱形的性质对A进行判断;根据直角三角形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据矩形的判定方法对D进行判断.
解:A、菱形的对角线互相垂直平分,所以A选项为真命题;
B、有一斜边与一直角边对应相等的两直角三角形全等,所以B选项为真命题;
C、有一组邻边相等且垂直的平行四边形是正方形,所以C选项为真命题;
D、对角线相等的平行四边形是矩形,所以D选项为假命题.
故选D.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-6
【解析】
根据题意得到ab=2,b-a=3,代入原式计算即可.
【详解】
∵反比例函数与一次函数y=x+3的图象的一个交点坐标为(m,n),
∴b=,b=a+3,
∴ab=2,b-a=3,
∴= =2×(-3)=-6,
故答案为:-6
此题考查反比例函数与一次函数的交点问题,解题关键在于得到ab=2,b-a=3
10、8
【解析】
先根据为图象端点,得到Q此时与B点重合,故得到AB=4,再根据,根据,得到,从而得到,再代入即可求出x,过点作于.设,根据,利用三角函数表示出,,故在中,利用得到方程即可求出m的值.
【详解】
解∵为图象端点,
∴与重合,
∴.
∵四边形为菱形,,
∴,此时,
∵=
∴,即.
∴当时,,即;
过点作于.设.
∵,
∴,.
在中,
∴,即,
∴,即.
故答案为:8;.
此题主要考查菱形的动点问题,解题的关键是熟知菱形的性质、勾股定理及解直角三角形的方法.
11、AC⊥BC或∠AOB=90°或AB=BC(填一个即可).
【解析】
试题分析:根据菱形的判定定理,已知平行四边形ABCD,添加一个适当的条件为:AC⊥BC或∠AOB=90°或AB=BC使其成为菱形.
考点:菱形的判定.
12、
【解析】
根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.
【详解】
解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,
∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,
即D为CE中点,
∵EF⊥BC,∴∠EFC=90°,
∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,
∵EF=3,∴CE=2,∴AB=,
故答案为.
本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.
13、3
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m的值.
【详解】
解:去分母得:3x=m+3,
由分式方程有增根,得到x﹣2=0,即x=2,
把x=2代入方程得:6=m+3,
解得:m=3,
故答案为:3
此题考查分式方程的增根,解题关键在于得到x的值.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
试题分析:连接DB,根据AB=AD,∠A=60°得出等边三角形,根据等边三角形的性质以及∠ADC=150°得出△BDC为直角三角形,最后根据勾股定理求出BC的长度.
试题解析:连结DB, ∵,, ∴是等边三角形,
∴,, 又∵
∴, ∵
∴
15、 (1)围成长为1cm、宽为8cm的矩形;(2)不能围成一个面积为145cm2的矩形.
【解析】
设矩形的一边长为xcm,则该边的邻边长为(24﹣x)cm.
(1)根据矩形的面积公式结合矩形的面积为128cm2,即可得出关于x的一元二次方程,解之即可得出结论;
(2)根据矩形的面积公式结合矩形的面积为145cm2,即可得出关于x的一元二次方程,由根的判别式△=﹣4<3,即可得出不能围成一个面积为145cm2的矩形.
【详解】
解:设矩形的一边长为xcm,则该边的邻边长为(24﹣x)cm.
(1)根据题意得:x(24﹣x)=128,
解得:x1=1,x2=8,
∴24﹣x=8或1.
答:围成长为1cm、宽为8cm的矩形,该矩形的面积为128cm2.
(2)根据题意得:x(24﹣x)=145,
整理得:x2﹣24x+145=3.
∵△=(﹣24)2﹣4×1×145=﹣4<3,
∴此方程无实根,
∴不能围成一个面积为145cm2的矩形.
本题主要考查一元二次方程的应用,能够根据题意列出方程,并利用根的判别式判断根的情况是解题的关键.
16、甲队平均每天绿化45米,乙队平均每天绿化30米
【解析】
设乙队平均每天绿化x米, 由时间=工作量÷工作效率,结合乙队比甲队多用6天列分式方程,解出x, 再代入方程检验即可求出x, 则乙队平均每天绿化多少米也可求.
【详解】
设乙队平均每天绿化x米,则甲队平均每天绿化1.5x米,
依题意得
解得x=30
经检验x=30是原方程的根且符合题意,
∴1.5x=45(米),
答:甲队平均每天绿化45米,乙队平均每天绿化30米。
此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程.
17、当时,一边长为8的直角三角形另两边的长分别为15,1.
【解析】
分情况讨论:当 时,利用计算出m,然后分别计算出y和z;当时,利用,解得,不合题意舍去;当时,利用求出,不合题意舍去,从而得到当时,一边长为8的直角三角形另两边的长.
【详解】
分三种情况:
当 时,
,
解得,舍去,
,
;
当时,
,解得
而m为奇数,所以舍去;
当时,
,解得,而m为奇数
舍去,
综上所述,当时,一边长为8的直角三角形另两边的长分别为15,1.
考查了勾股数:满足的三个正整数,称为勾股数记住常用的勾股数再做题可以提高速度.
18、(1)y=18-2x,(2),(3)cm2.
【解析】
(1)根据等腰三角形周长公式可求出底边长与腰的函数关系式;
(2)由三角形两边之和大于第三边的关系可知x的取值范围;
(3)当为等边三角形时, AB=BC=AC=6,根据勾股定理求出三角形的高,然后根据三角形的面积公式求解即可.
【详解】
(1)等腰三角形的底边长为y、腰长为x,
依题意和已知,有:
∵y+2x=18,
∴y=18-2x;
(2)∵,
∴18-2x>0,
∴x
相关试卷
这是一份2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年贵州省铜仁地区名校九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广西柳州市柳林中学九上数学开学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。