![2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16175784/0-1726816322594/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16175784/0-1726816322695/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16175784/0-1726816322727/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】
展开
这是一份2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)对于二次函数的图象与性质,下列说法正确的是( )
A.对称轴是直线,最大值是2B.对称轴是直线,最小值是2
C.对称轴是直线,最大值是2D.对称轴是直线,最小值是2
2、(4分)点(-2,3)关于x轴的对称点为( ).
A.(-2,-3)B.(2,-3)C.(2,3)D.(3,-2)
3、(4分)已知AB=8cm,小红在作线段AB的垂直平分线时操作如下:分别以A和B为圆心,5cm的长为半径画弧,两弧相交于C、D,则直线CD即为所求,根据此种作图方法所得到的四边形ADBC的面积是( )
A.12cm2B.24cm2C.36cm2D.48cm2
4、(4分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )
A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2
5、(4分)在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )
A.众数是90B.中位数是90C.平均数是90D.极差是15
6、(4分)已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为( )
A.(1,2)B.(2,9)C.(5,3)D.(–9,–4)
7、(4分)点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是( )
A.B.
C.D.
8、(4分)已知实数a,b,若a>b,则下列结论错误的是
A.a-7>b-7B.6+a>b+6C.D.-3a>-3b
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,AE平分∠BAD,AE交BC于E,则∠BOE的大小为______.
10、(4分)直线y=x+1与y=-x+7分别与x轴交于A、B两点,两直线相交于点C,则△ABC的面积为___.
11、(4分)如图,点B是反比例函数()图象上一点,过点B作x轴的平行线,交轴于点A,点C是轴上一点,△ABC的面积是2,则=______.
12、(4分)如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别是三边的中点,CF=8cm,则线段DE=________cm.
13、(4分)若,则分式_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,AB=8,AC=1.点D在边AB上,AD=4.2.△ABC的角平分线AE交CD于点F.
(1)求证:△ACD∽△ABC;
(2)求的值.
15、(8分)如图,在正方形网格中,△TAB 的顶点坐标分别为 T(1,1)、A(2,3)、B(4,2).
(1)以点 T(1,1)为位似中心,在位似中心的 同侧将△TAB 放大为原来的 3 倍,放大 后点 A、B 的对应点分别为 A'、B',画出△TA'B':
(2)写出点 A'、B'的坐标:A'( )、B'( );
(3)在(1)中,若 C(a,b)为线段 AB 上任一 点,则变化后点 C 的对应点 C'的坐标为 ( ).
16、(8分)如图,在矩形ABCD中,AC=60 cm,∠BAC=60°,点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,同时点F从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点E,F运动的时间是t秒(00)的图象上,
∴k=xy=OC⋅AC=1.
故答案为:1.
此题考查反比例函数系数k的几何意义,解题关键在于作辅助线.
20、.
【解析】
由∠B=90°,∠BAD=45°,根据直角三角形两锐角互余求得∠BDA=45°,因此AB=BD,由∠DAC=15°,根据三角形外角性质可求得∠C=30°,由AC=2,根据直角三角形中30°的角所对的直角边等于斜边的一半,求得AB=1,即BD=1,根据勾股定理求得BC=,从而得到CD的长.
【详解】
解:∵∠B=90°,∠BAD=45°,
∴∠BDA=45°,AB=BD,
∵∠DAC=15°,
∴∠C=30°,
∴AB=BD=AC=×2=1,
∴BC===,
∴CD=BC-BD=-1.
故答案为-1.
本题考查了直角三角形两锐角互余的性质,30°的角所对的直角边等于斜边的一半,勾股定理等知识.
21、
【解析】
先把各根式化为最简二次根式,再合并同类项即可.
【详解】
原式=-2+2
=3-2.
故答案为:3-2.
本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.
22、
【解析】
提取公因式a进行分解即可.
【详解】
解:a2−5a=a(a−5).
故答案是:a(a−5).
本题考查了因式分解−提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
23、1
【解析】
作DE⊥AB于E.设AC=x.由AD平分∠CAB,DC⊥AC,DE⊥AB,推出DC=DE=6,由BC=16,推出BD=10,在Rt△EDB中,BE==8,易知△ADC≌△ADE,推出AE=AC=x,在Rt△ACB中,根据AC2+BC2=AB2,可得x2+162=(x+8)2,由此即可解决问题.
【详解】
解:作DE⊥AB于E.设AC=x.
∵AD平分∠CAB,DC⊥AC,DE⊥AB,
∴DC=DE=6,
∵BC=16,
∴BD=10,
在Rt△EDB中,BE==8,
易知△ADC≌△ADE,
∴AE=AC=x,
在Rt△ACB中,∵AC2+BC2=AB2,
∴x2+162=(x+8)2,
∴x=1,
∴AC=1.
故答案为1;
本题考查了角平分线性质,全等三角形的性质与判定及勾股定理,熟练掌握相关性质定理是解题的关键。
二、解答题(本大题共3个小题,共30分)
24、(1);(2)或.
【解析】
试题分析:(1)求出B, D两点坐标,根据点在直线上点的坐标满足方程的关系,将B, D两点坐标代入y=kx+b中,得到方程组,解之即得直线y=kx+b的表达式.
(2)将直线平移,平移后的解析式为,当它左移超过点A或右移超过点C时,它与矩形没有公共点 .因此,只要将A, C两点坐标分别代入中求出的值即可求得b的取值范围或.
(1)∵ A(1,0), B(9,0),AD=1.
∴D(1,1).
将B, D两点坐标代入y=kx+b中,
得,解得.
∴直线的表达式为.
(2)或.
考点:1.直线上点的坐标与方程的关系;2.平移的性质.
25、(1)证明见解析;(2).
【解析】
(1)根据平行四边形的判定定理即可得到结论;
(2)根据平行线的性质得到∠DAB=∠ABE=60°,推出△ABD是等边三角形,由BD垂直平分AC,得到∠AFD=90°,AC=2AF,解直角三角形即可得到结论.
【详解】
(1)∵BD垂直平分AC,EA⊥AC,∴AE∥BD.
∵BE∥AD,∴四边形AEBD是平行四边形;
(2)∵AD∥BE,∴∠DAB=∠ABE=60°.
∵∠ABD=60°,∴△ABD是等边三角形.
∵BD垂直平分AC,∴∠AFD=90°,AC=2AF.
∵AD=2,∴AF,∴AC=.
本题考查了平行四边形的判定和性质,解直角三角形,等边三角形的判定和性质,正确的识别图形是解题的关键.
26、 (1);(2);(3) 或.
【解析】
(1)由二次根式有意义的条件可求出a、b的值,再根据已知即可求得答案;
(2)由题意得:,则,当时,四边形是平行四边形,由此可得关于t的方程,求出t的值即可求得答案;
(3)分、两种情况分别画出符合题意的图形,
【详解】
(1)由,
则,
,
∵AB//OC,A(0,12),B(a,c),
∴c=12,
∴;
(2)如图,
由题意得:,
则:,
当时,四边形是平行四边形,
,
解得:,
;
(3)当时,过作,则四边形AOQN是矩形,
∴AN=OQ=t,QN=OA=12,
∴PN=t,
由题意得:,
解得:,
故,
当时,过作轴,
由题意得:,
则,
解得:,
故.
本题考查了二次根式有意义的条件,平行形的性质,矩形的判定与性质,等腰三角形的性质,坐标与图形的性质等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年贵州省铜仁松桃县联考数学九年级第一学期开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年贵州省铜仁地区名校九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年贵州省罗甸县联考数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。