2024-2025学年贵州铜仁伟才学校九年级数学第一学期开学统考模拟试题【含答案】
展开
这是一份2024-2025学年贵州铜仁伟才学校九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若反比例函数图象上有两个点,设,则不经过第( )象限.
A.一B.二C.三D.四
2、(4分)小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是( )
A.B.
C.D.
3、(4分)如图,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,则图中阴影部分面积为( )
A.1B.1.5C.2D.2.5
4、(4分)在平行四边形ABCD中,若∠B=135°,则∠D=( )
A.45°B.55°C.135°D.145°
5、(4分)下列各组数中能作为直角三角形的三边长的是( ).
A.1,,1B.2,3,4C.4,5,6D.8,13,5
6、(4分)炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是
A.B.C.D.
7、(4分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S2甲=36,S2乙=30,则两组成绩的稳定性( )
A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定
C.甲、乙两组的成绩一样稳定D.无法确定
8、(4分)若m<n,则下列结论正确的是( )
A.2m>2nB.m﹣4<n﹣4C.3+m>3+nD.﹣m<﹣n
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将直线y=﹣2x+4向下平移5个单位长度,平移后直线的解析式为_____.
10、(4分)如图,在平面直角坐标系中,绕点旋转得到,则点的坐标为_______.
11、(4分)甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S甲2=0.90平方环,S乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是__.
12、(4分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.
13、(4分)已知:将直线y=x﹣1向上平移3个单位后得直线y=kx+b,则直线y=kx+b与x轴交点坐标为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算(2+1)(2﹣1)﹣(1﹣2)2
15、(8分)已知关于x的方程﹣=m的解为非负数,求m的取值范围.
16、(8分)在中,,,点是的中点,,垂足为,连接.
(1)如图1,与的数量关系是__________.
(2)如图2,若是线段上一动点(点不与点、重合),连接,将线段绕点逆时针旋转得到线段,连接,请猜想三者之间的数量关系,并证明你的结论;
17、(10分)如图,点是边长为的正方形对角线上一个动点(与不重合),以为圆心,长为半径画圆弧,交线段于点,联结,与交于点.设的长为,的面积为.
(1)判断的形状,并说明理由;
(2)求与之间的函数关系式,并写出定义域;
(3)当四边形是梯形时,求出的值.
18、(10分)关于的方程有两个不相等的实数根.
求实数的取值范围;
是否存在实数,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出的值;若不存在,说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:3-2= ;
20、(4分)在平面直角坐标系中,点在第________象限.
21、(4分)现有四根长,,,的木棒,任取其中的三根,首尾顺次相连后,能组成三角形的概率为______.
22、(4分)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(m,3),AB⊥x轴于点B,平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数解析式是___.
23、(4分)在平面直角坐标系中,函数()与()的图象相交于点M(3,4),N(-4,-3),则不等式的解集为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形网格中,每一个小正方形的边长为1.△ABC的三个顶点都在格点上,A、C的坐标分别是(﹣4,6),(﹣1,4).
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出△ABC向右平移6个单位的△A1B1C1,并写出C1的坐标 ;
(3)请画出△ABC关于原点O对称的△A2B2C2 , 并写出点C2的坐标 .
25、(10分)(1)解不等式:
(2)解方程:
26、(12分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点,试说明四边形AECF是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用反比例函数的性质判断出m的正负,再根据一次函数的性质即可判断.
【详解】
解:∵,
∴a-1>0,
∴图象在三象限,且y随x的增大而减小,
∵图象上有两个点(x1,y1),(x2,y2),x1与y1同负,x2与y2同负,
∴m=(x1-x2)(y1-y2)<0,
∴y=mx-m的图象经过一,二、四象限,不经过三象限,
故选:C.
本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
2、C
【解析】
根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.
【详解】
∵小李距家3千米,∴离家的距离随着时间的增大而增大.
∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合.
故选C.
本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.
3、B
【解析】
作DH⊥BC于H,得到△DEB是等腰直角三角形,设DH=BH=EH=a,证明△CDH∽△CAB,得到,求得AB=,CE=2a,根据得到,利用阴影面积=求出答案.
【详解】
作DH⊥BC于H,
∵∠ABC=90°,BD是△ABC的角平分线,
∴∠ABD=∠DBC=45°,
∴△DEB是等腰直角三角形,
设DH=BH=EH=a,
∵DH∥AB,
∴△CDH∽△CAB,
∴,
∵AD=1,
∴AC=4,
∴,
∴AB=,CE=2a,
∵,
∴,
∴=1,
∴,
∴图中阴影部分的面积=
=
=
=
故选:B.
此题考查等腰直角三角形的判定及性质,相似三角形的判定及性质,求不规则图形的面积,根据阴影图形的特点确定求面积的方法进而进行计算是解答问题的关键.
4、C
【解析】
根据平行四边形的性质解答即可.
【详解】
解:∵在平行四边形ABCD中,∠B=135°,
∴∠D=∠B=135°,
故选:C.
本题考查了平行四边形的性质的知识,解答本题的关键是根据平行四边形的性质得出∠D=∠B.
5、A
【解析】
根据勾股定理的逆定理对各选项进行逐一分析即可.
【详解】
A选项:,故可以构成直角三角形;
B选项:,故不能构成直角三角形;
C选项:,故不能构成直角三角形;
D选项:,故不能构成直角三角形;
故选:A.
考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
6、D
【解析】
试题分析:由乙队每天安装x台,则甲队每天安装x+2台,则根据关键描述语:“两队同时开工且恰好同时完工”,找出等量关系为:甲队所用时间=乙队所用时间,据此列出分式方程:.故选D.
7、B
【解析】
试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,
∵30<36,∴乙组比甲组的成绩稳定.故选B.
8、B
【解析】
根据不等式的性质逐个判断即可.
【详解】
解:A、∵m<n,
∴2m<2n,故本选项不符合题意;
B、∵m<n,
∴m﹣4<n﹣4,故本选项符合题意;
C、∵m<n,
∴3+m<3+n,故本选项不符合题意;
D、∵m<n,
∴﹣m>﹣n,故本选项不符合题意;
故选:B.
此题主要考查不等式的性质,解题的关键是熟知不等式的性质辨别方法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=-2x-1.
【解析】
直接根据“上加下减”的平移规律求解即可.
【详解】
直线y=-2x+4向下平移5个单位长度后:y=-2x+4-5,即y=-2x-1.
故答案为:y=-2x-1.
本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.
10、
【解析】
连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交于点D,点D即为所求.
【详解】
解:连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交点即为点D,如图,旋转中心D的坐标为(3,0).
故答案为:(3,0).
本题考查了旋转的性质,掌握对应点连线的垂直平分线的交点就是旋转中心是解题的关键.
11、甲
【解析】
试题分析:当两人的平均成绩相同时,如果方差越小则说明这个人的成绩越稳定.
12、1
【解析】
解:解如图所示:在RtABC中,BC=3,AC=5,
由勾股定理可得:AB2+BC2=AC2
设旗杆顶部距离底部AB=x米,则有32+x2=52,
解得x=1
故答案为:1.
本题考查勾股定理.
13、(﹣4,0).
【解析】
根据平行直线的解析式的k值相等,向上平移3个单位,横坐标不变,纵坐标加3,写出平移后的解析式,然后令y=0,即可得解.
【详解】
∵直线y=x﹣1向上平移3个单位后得直线y=kx+b,
∴直线y=kx+b的解析式为:y=x+2,
令y=0,则0=x+2,
解得:x=﹣4,
∴直线y=kx+b与x轴的交点坐标为(﹣4,0).
故答案为:(﹣4,0).
本题主要考查直线平移的规律以及直线与x轴交点的坐标,掌握平行直线的解析式的k值相等,是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、4-2.
【解析】
直接利用乘法公式以及二次根式的性质分别计算得出答案.
【详解】
解:原式=12-1-(1-4+12)=4-2
此题主要考查了二次根式结合平方差公式和完全平方公式的混合运算,正确掌握相关运算法则是解题关键.
15、m≥
【解析】
分析:
先按解一元一次方程的一般步骤解原方程得到用含m的代数式表达的x的值,再根据题意列出不等式,解不等式即可求得m的取值范围.
详解:
解关于x的方程:,
去分母得:,
移项、合并同类项得:,
∴
又∵原方程的解为非负数,
∴,解得:,
∴m的取值范围是.
点睛:本题的解题要点是:(1)解关于x的方程得到:,(2)由原方程的解为非负数列出不等式.
16、(1)DE=BC;(2)
【解析】
(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,可得DE=BD=BC;
(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”判断△DCP≌△DBF,则CP=BF,利用CP+BP =BC,DE=BC可得到DE =(BF+BP).
【详解】
解:(1)∵∠ACB=90°,∠A=30°,
∴∠B=60°,
∵点D是AB的中点,
∴DB=DC,
∴△DCB为等边三角形,
∵DE⊥BC,
∴DE=BC;
故答案为DE=BD=BC.
(2)DE =(BF+BP).理由如下:
∵线段DP绕点D逆时针旋转60°,得到线段DF,
∴∠PDF=60°,DP=DF,
而∠CDB=60°,
∴∠CDB-∠PDB=∠PDF-∠PDB,
∴∠CDP=∠BDF,
在△DCP和△DBF中
,
∴△DCP≌△DBF(SAS),
∴CP=BF,
而CP=BC-BP,
∴BF+BP=BC,
∵DE=BC,
∴DE =(BF+BP);
故答案为DE =(BF+BP).
本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.
17、(1)为等腰直角三角形,理由见解析;(2)y=;(3)
【解析】
(1)先证明,再证明四边形是矩形,再证明,可得,即可得为等腰直角三角形.
(2)由,,即可求得与之间的函数关系式.
(3)因为四边形是梯形时,得.求PF的长,需利用已知条件求AC,AP,CE的长,则即可得出答案.
【详解】
解:(1) 为等腰直角三角形,理由如下:
在正方形中,,
又,
由题意可得,,
过点作,与分别交于点,
在正方形中,
四边形是矩形,
在中,
又
为等腰直角三角形
(2)在中,,
在中,
为等腰直角三角形,
(3)在等腰直角三角形中,
,
当四边形是梯形时,只有可能,
此题考查全等三角形的判定与性质,函数表达式的求解,梯形的性质,解题关键在于综合运用考点,利用图形与函数的结合求解即可.
18、(1)且;(2)不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根.
【解析】
由于方程有两个不相等的实数根,所以它的判别式,由此可以得到关于的不等式,解不等式即可求出的取值范围.
首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于的等式,解出值,然后判断值是否在中的取值范围内.
【详解】
解:依题意得,
,
又,
的取值范围是且;
解:不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根,
理由是:设方程的两根分别为,,
由根与系数的关系有:,
又因为方程的两个实数根之和等于两实数根之积的算术平方根,
,
,
由知,,且,
不符合题意,
因此不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根.
本题重点考查了一元二次方程的根的判别式和根与系数的关系。
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据负整数指数为正整数指数的倒数计算.
解:3-2=.故答案为.
20、二
【解析】
根据各象限内点的坐标特征解答.
【详解】
解:点位于第二象限.
故答案为:二.
本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
21、
【解析】
先展示所有可能的结果数,再根据三角形三边的关系得到能组成三角形的结果数,然后根据概率公式求解.
【详解】
解:∵现有四根长30cm、40cm、70cm、90cm的木棒,任取其中的三根,可能结果有:30cm、40cm、70cm;30cm、40cm、90cm;30cm、70cm、90cm;40cm、70cm、90cm;其中首尾相连后,能组成三角形的有:30cm、70cm、90cm;40cm、70cm、90cm;
共有4种等可能的结果数,其中有2种能组成三角形,
所以能组成三角形的概率= .
故答案为:.
本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .
22、y=x﹣1.
【解析】
可以先求出点A的坐标,进而知道直线平移的距离,得出点B的坐标,平移前后的k相同,设出平移后的关系式,把点B的坐标代入即可.
【详解】
∵点A(m,1)在反比例函数y=的图象,
∴1=,即:m=2,
∴A(2,1)、B(2,0)
点A在y=kx上,
∴k=
∴y=x
∵将直线y=x平移2个单位得到直线l,
∴k相等
设直线l的关系式为:y=x+b,把点B(2,0)代入得:b=﹣1,
直线l的函数关系式为:y=x﹣1;
故答案为:y=x﹣1.
本题考查反比例函数的图象上点的坐标的特点、待定系数法求函数解析式、一次函数和平移等知识,理解平移前后两个因此函数的k值相等,是解决问题的关键.
23、-4<x<0或x>1.
【解析】
先根据已知条件画出在同一平面直角坐标系中,函数y=kx+b(k≠0)与(m≠0)的图象,再利用图象求解即可.
【详解】
解:如图.
∵函数y=kx+b(k≠0)与(m≠0)的图象相交于点M(1,4),N(-4,-1),
∴不等式kx+b>的解集为:-4<x<0或x>1.
故答案为-4<x<0或x>1.
本题考查了反比例函数与一次函数的交点问题,画出图象利用数形结合是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)见解析; (5,4) ;(3)见解析; (1,-4).
【解析】
(1)根据A、C两点的坐标建立平面直角坐标系即可;
(2)根据图形平移的性质画出△A1B1C1′,然后写出点C1坐标;
(3)分别作出点A、B、C关于原点O的对称点A2、B2、C2,连接A2、B2、C2即可得到△ABC关于原点O对称的△A2B2C2,然后写出点C2坐标.
【详解】
解:(1)如图,建立平面直角坐标系;
(2)如图,△A1B1C1为所作;点C1的坐标为(5,4) ;
(3)如图,△A2B2C2为所作;点C2的坐标为(1,-4).
故答案为:(1)见解析;(2)见解析; (5,4) ;(3)见解析; (1,-4).
本题考查旋转变换及平移变换,熟知图形经过旋转及平移后与原图形全等是解题的关键.
25、(1);(2)
【解析】
(1)按照去分母、移项、合并同类项的步骤求解即可;
(2)按照去分母、系数化1的步骤求解即可.
【详解】
(1)去分母得
移项、合并得
解得
所以不等式的解集为
(2)去分母得
解得
经检验,是分式方程的解.
此题主要考查不等式以及分式方程的求解,熟练掌握,即可解题.
26、见解析
【解析】
平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为:平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD.
∵点E、F分别是OB、OD的中点,
∴OE=OF.
∴四边形AECF是平行四边形.(方法不唯一)
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2023-2024学年贵州省铜仁伟才学校数学九年级第一学期期末调研试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,,二次函数图象的顶点坐标是等内容,欢迎下载使用。
这是一份贵州省贵州铜仁伟才学校2023-2024学年九年级数学第一学期期末调研模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份2023-2024学年贵州铜仁伟才学校数学八年级第一学期期末监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中,无理数是,因式分解x﹣4x3的最后结果是等内容,欢迎下载使用。