


2024-2025学年河北省沧州沧县联考九年级数学第一学期开学调研试题【含答案】
展开
这是一份2024-2025学年河北省沧州沧县联考九年级数学第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )
A.B.
C.D.
2、(4分)下而给出四边形ABCD中的度数之比,其中能判定四边形ABCD为平行四边形的是( ).
A.1:2:3:4B.1:2:2:3C.2:2:3:3D.2:3:2:3
3、(4分)为加快5G网络建设,某移动通信公司在山顶上建了一座5G信号通信塔AB,山高BE=100米(A,B,E在同一直线上),点C与点D分别在E的两侧(C,E,D在同一直线上),BE⊥CD,CD之间的距离1000米,点D处测得通信塔顶A的仰角是30°,点C处测得通信塔顶A的仰角是45°(如图),则通信塔AB的高度约为( )米.(参考数据:,)
A.350B.250C.200D.150
4、(4分)如图1,在矩形中,动点从点出发,沿方向运动至点处停止,设点运动的路程为,△BCE的面积为,如果关于的函数图象如图2所示,则当时,点应运动到( )
A.点处B.点处C.点处D.点处
5、(4分)如图,中,,是上一点,且,是上任一点,于点,于点,下列结论:①是等腰三角形;②;③;④,其中正确的结论是( )
A.①②B.①③④C.①④D.①②③④
6、(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是( )
A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b
7、(4分)如图,在△ABC中,∠A=90°,点D在AC边上,DE//BC,若∠1=155°,则∠B的度数为( )
A.55°B.65°C.45°D.75°
8、(4分)估计的运算结果在哪两个整数之间( )
A.3和4B.4和5C.5和6D.6和7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的分式方程有正实数解的概率为________.
10、(4分)某个“清凉小屋”自动售货机出售三种饮料.三种饮料的单价分别是2元/瓶、3元/瓶、5元/瓶. 工作日期间,每天上货量是固定的,且能全部售出,其中,饮料的数量(单位:瓶)是饮料数量的2倍,饮料的数量(单位:瓶)是饮料数量的2倍. 某个周六,三种饮料的上货量分别比一个工作日的上货量增加了50%,60%,50%,且全部售出. 但是由于软件bug,发生了一起错单(即消费者按某种饮料1瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了403元. 则这个“清凉小屋”自动售货机一个工作日的销售收入是__________元.
11、(4分)在平面直角坐标系中,已知坐标,将线段(第一象限)绕点(坐标原点)按逆时针方向旋转后,得到线段,则点的坐标为____.
12、(4分)直角三角形中,两条直角边长分别为12和5,则斜边上的中线长是________.
13、(4分)甲,乙,丙三位同学近次快速阅读模拟比赛成绩平均分均为分,且甲,乙,丙的方差是,则发挥最稳定的同学是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.
(1)此次抽样调查的样本容量是_________;
(2)写出表中的a=_____,b=______,c=________;
(3)补全学生成绩分布直方图;
(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?
15、(8分)据某市交通运管部门月份的最新数据,目前该市市面上的共享单车数量已达万辆,共享单车也逐渐成为高校学生喜爱的“绿色出行”方式之一.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.
(1)求这天部分出行学生使用共享单车次数的平均数,中位数和众数.
(2)若该校这天有名学生出行,估计使用共享单车次数在次以上(含次)的学生数.
16、(8分)2018年5月,某城遭遇暴雨水灾,武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇,冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示,假设群众上下冲锋舟和救生艇的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.
(1)冲锋舟从A地到C地的时间为 分钟,冲锋舟在静水中的速度为 千米/分,水流的速度为 千米/分.
(2)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇,已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b,若冲锋舟在距离A地 千米处与救生艇第二次相遇,求k、b的值.
17、(10分)解方程:
(1);
(2).
18、(10分)如图,在中,,,求:
的长;
的面积;
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,,以点为圆心, 任意长为半径画弧, 交于点,交于点,再分别以点、为圆心,大于长为半径画弧交于点,过点作射线,在射线上截取,过点作, 垂足为点, 则的长为________________.
20、(4分)如图,在平行四边形中,连接,且,过点作于点,过点作于点,在的延长线上取一点,,若,则的度数为____________.
21、(4分)在一频数分布直方图中共有9个小长方形,已知中间一个长方形的高等于其它8个小长方形的高的和的,且这组数据的总个数为120,则中间一组的频数为_______.
22、(4分)在▱ABCD中,∠BAD的平分线AE把边BC分成5和6两部分,则▱ABCD的周长为_____.
23、(4分)如图,在平面直角坐标系xOy中,一次函数与反比例函数的图象交于点,.结合图象,直接写出关于x的不等式的解集____
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,
(1)求证:△BCE≌△ACD;
(2)求证:CF=CH;
(3)判断△CFH的形状并说明理由.
25、(10分)如图,已知菱形ABCD的对角线AC,BD相交于点O,过C作CE⊥AC,交AB的延长线于点E.
(1)求证:四边形BECD是平行四边形;
(2)若∠E=50°,求∠DAB的度数.
26、(12分)计算:
(1) (2)(4)÷2
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.
【详解】
解:由题意得可知:OB=2,BC=1,依据勾股定理可知:OC==.
∴OM=.
故选:B.
本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.
2、D
【解析】
由于平行四边形的两组对角分别相等,故只有D能判定是平行四边形.其它三个选项不能满足两组对角相等,故不能判定.
【详解】
解:根据平行四边形的两组对角分别相等,可知D正确.
故选:D.
本题考查了平行四边形的判定,运用了两组对角分别相等的四边形是平行四边形这一判定方法.
3、B
【解析】
设AB=x米,则AE=(100+x)米,然后利用特殊角的三角函数值表示出DE,EC,最后利用CD=DE+EC=1000即可求出x的值.
【详解】
设AB=x米,则AE=(100+x)米,
在Rt△AED中,
∵ ,
则DE==(100+x),
在Rt△AEC中,∠C=45°,
∴CE=AE=100+x,
由题意得,(100+x)+(100+x)=1000,
解得x=250,
即AB=250米,
故选:B.
本题主要考查解直角三角形,掌握特殊角的三角函数值是解题的关键.
4、B
【解析】
分析:注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.
详解:当E在AB上运动时,△BCE的面积不断增大;
当E在AD上运动时,BC一定,高为AB不变,此时面积不变;
当E在DC上运动时,△BCE的面积不断减小.
∴当x=7时,点E应运动到高不再变化时,即点D处.
故选B.
点睛:本题考查动点问题的函数图象问题,有一定难度,注意要仔细分析.关键是根据所给函数图象和点的运动轨迹判断出x=3到7时点E所在的位置.
5、B
【解析】
根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADB=∠C+∠DBC,然后求出∠C=∠DBC,再根据等角对等边可得DC=DB,从而判断①正确;没有条件说明∠C的度数,判断出②错误;连接PD,利用△BCD的面积列式求解即可得到PE+PF=AB,判断出③正确;过点B作BG∥AC交FP的延长线于G,根据两直线平行,内错角相等可得∠C=∠PBG,∠G=∠CFP=90°,然后求出四边形ABGF是矩形,根据矩形的对边相等可得AF=BG,根据然后利用“角角边”证明△BPE和△BPG全等,根据全等三角形对应边相等可得BG=BE,再利用勾股定理列式求解即可判断④正确.
【详解】
在△BCD中,∠ADB=∠C+∠DBC,
∵∠ADB=2∠C,
∴∠C=∠DBC,
∴DC=DB,
∴△DBC是等腰三角形,故①正确;
无法说明∠C=30°,故②错误;
连接PD,则S△BCD=BD•PE+DC•PF=DC•AB,
∴PE+PF=AB,故③正确;
过点B作BG∥AC交FP的延长线于G,
则∠C=∠PBG,∠G=∠CFP=90°,
∴∠PBG=∠DBC,四边形ABGF是矩形,
∴AF=BG,
在△BPE和△BPG中,
,
∴△BPE≌△BPG(AAS),
∴BG=BE,
∴AF=BE,
在Rt△PBE中,PE2+BE2=BP2,
即PE2+AF2=BP2,故④正确.
综上所述,正确的结论有①③④.
故选:B.
本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,勾股定理的应用,作辅助线构造出矩形和全等三角形是解题的关键.
6、D
【解析】
由图象对称轴为直线x=-,则-=-,得a=b,
A中,由图象开口向上,得a>0,则b=a>0,由抛物线与y轴交于负半轴,则c
相关试卷
这是一份河北省沧州沧县联考2023-2024学年九年级数学第一学期期末质量检测试题含答案,共10页。试卷主要包含了 “泱泱华夏,浩浩千秋,如图, 在同一坐标系中等内容,欢迎下载使用。
这是一份河北省沧州市沧县2023-2024学年数学九上期末联考模拟试题含答案,共7页。试卷主要包含了若反比例函数的图象上有两点P1等内容,欢迎下载使用。
这是一份河北省沧州市沧县2023-2024学年九上数学期末调研模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,设,则代数式的值为,下列各式与是同类二次根式的是等内容,欢迎下载使用。
