2024-2025学年河北省衡水数学九年级第一学期开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有( )
A.7队B.6队C.5队D.4队
2、(4分)下列命题是真命题的是( )
A.对角线互相垂直的四边形是菱形B.对角线相等的菱形是正方形
C.对角线互相垂直且相等的四边形是正方形D.对角线相等的四边形是矩形
3、(4分)一元二次方程的求根公式是( )
A.B.
C.D.
4、(4分)下列二次根式中,最简二次根式是( )
A.B.C.D.
5、(4分)等于( )
A.±4B.4C.﹣4D.±2
6、(4分)已知函数y=,则自变量x的取值范围是( )
A.﹣1<x<1B.x≥﹣1且x≠1C.x≥﹣1D.x≠1
7、(4分)在平面直角坐标系中,把△ABC 先沿 x 轴翻折,再向右平移 3 个单位得到△ABC 现把这两步 操作规定为一种变换.如图,已知等边三角形 ABC 的顶点 B、C 的坐标分别是(1,1)、(3,1), 把三角形经过连续 5 次这种变换得到三角形△ABC,则点 A 的对应点 A 的坐标是( )
A.(5,﹣)B.(14,1+)C.(17,﹣1﹣)D.(20,1+)
8、(4分)若函数的解析式为y=,则当x=2时对应的函数值是( )
A.4B.3C.2D.0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数如表,则该周PM2.5指数的众数和中位数分别是________
10、(4分)不等式-->-1的正整数解是_____.
11、(4分)如果一组数据2,4,,3,5的众数是4,那么该组数据的中位数是___.
12、(4分)试写出经过点,的一个一次函数表达式:________.
13、(4分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:
(1)在图1中,作出∠DAE的角平分线;
(2)在图2中,作出∠AEC的角平分线.
15、(8分)边长为,的矩形发生形变后成为边长为,的平行四边形,如图1,平行四边形中,,边上的高为,我们把与的比值叫做这个平行四边形的“形变比”.
(1)若形变后是菱形(如图2),则形变前是什么图形?
(2)若图2中菱形的“形变比”为,求菱形形变前后的面积之比;
(3)当边长为3,4的矩形变后成为一个内角是30°的平行四边形时,求这个平行四边形的“形变比”.
16、(8分)如图,在等腰直角三角形ABC中,D是AB的中点,E,F分别是AC,BC.上的点(点E不与端点A,C重合),且连接EF并取EF的中点O,连接DO并延长至点G,使,连接DE,DF,GE,GF
(1)求证:四边形EDFG是正方形;
(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?
17、(10分)已知关于x的方程x2-(m+2)x+(2m-1)=1.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.
18、(10分)已知是不等式的一个负整数解,请求出代数式的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)关于x的方程ax﹣2x﹣5=0(a≠2)的解是_____.
20、(4分)若二次根式有意义,则实数m的取值范围是_________.
21、(4分)因式分解:a2﹣6a+9=_____.
22、(4分)a、b、c是△ABC三边的长,化简+|c-a-b|=_______.
23、(4分)已知函数y=-3x的图象经过点A(1,y1),点B(﹣2,y2),则y1_____y2(填“>”“<”或“=”)
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:,并把它的解集在数轴上表示出来。
25、(10分)分解因式:
26、(12分)如图,一次函数的图象与轴、轴分别交于、两点,与反比例函数交于点,过点分别作轴、轴的垂线,垂足分别为点、.若,,.
(1)求点的坐标;
(2)求一次函数和反比例函数的表达式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解:设邀请x个球队参加比赛,
依题意得1+2+3+…+x-1=10,
即,
∴x2-x-20=0,
∴x=5或x=-4(不合题意,舍去).
故选C
2、B
【解析】
根据菱形的判定方法、正方形的判定方法以及矩形的判定方法对各选项加以判断即可.
【详解】
A:对角线互相垂直的平行四边形是菱形,故选项错误,为假命题;
B:对角线相等的菱形是正方形,故选项正确,为真命题;
C:对角线互相垂直且相等的平行四边形是正方形,故选项错误,为假命题;
D:对角线相等的平行四边形是矩形,故选项错误,为假命题;
故选:B.
本题主要考查了菱形、正方形以及矩形的判定方法,熟练掌握相关概念是解题关键.
3、A
【解析】
根据一元二次方程的求根公式,即可做出判断.
【详解】
解:一元二次方程的求根公式是,故选A.
本题主要考查了一元二次方程的求根公式,准确的识记求根公式是解答本题的关键.
4、B
【解析】
化简得到结果,即可做出判断.
【详解】
解:A、=,不是最简二次根式;
B、是最简二次根式;
C、=7,不是最简二次根式;
D、=,不是最简二次根式;
故选:B.
此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.
5、B
【解析】
根据=|a|可以得出的答案.
【详解】
=|﹣4|=4,故选:B.
本题考查平方根的性质,熟记平方根的性质是解题的关键.
6、B
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.
【详解】
解:根据题意得:,
解得:x≥-1且x≠1.
故选B.
点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
7、C
【解析】
首先把△ABC先沿x轴翻折,再向右平移3个单位得到△ABC得到点A 的坐标为(2+3,-1- ),同样得出A 的坐标为(2+3+3,1+),…由此得出A 的坐标为(2+3×5,-1-),进一步选择答案即可.
【详解】
∵把△ABC先沿x轴翻折,再向右平移3个单位得到△ABC得到点A1的坐标为(2+3,−1−),
同样得出A的坐标为(2+3+3,1+),
…
A的坐标为(2+3×5,−1−),即(17,−1−).
故选:C.
此题考查坐标与图形变化-对称,坐标与图形变化-平移,规律型:点的坐标,解题关键在于根据题意找出规律.
8、A
【解析】
把x=2代入函数解析式y=,即可求出答案.
【详解】
把x=2代入函数解析式y=得,
故选A.
本题考查的是函数值的求法.将自变量的值x=2代入函数解析式并正确计算是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、150,1
【解析】
根据众数和中位数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:150,150,150,1,1,160,165,
则众数为:150,
中位数为:1.
故答案为:150,1
此题考查中位数,众数,解题关键在于掌握其概念
10、1,1
【解析】
首先确定不等式的解集,然后再找出不等式的特殊解.
【详解】
解:解不等式得:x<3,
故不等式的正整数解为:1,1.
故答案为1,1.
本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.
11、1
【解析】
根据众数为1,可得x等于1,然后根据中位数的概念,求解即可.
【详解】
解:因为这组数据的众数是1,
∴x=1,
则数据为2、3、1、1、5,
所至这组数据的中位数为1,
故答案为:1.
本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
12、y=x+1
【解析】
根据一次函数解析式,可设y=kx+1,把点代入可求出k的值;
【详解】
因为函数的图象过点(1,2),
所以可设这个一次函数的解析式y=kx+1,把(1,2)代入得:2=k+1,
解得k=1,
故解析式为y=x+1
此题考查一次函数解析式,解题的关键是设出解析式;
13、.
【解析】
首先,需要证明线段B1B2就是点B运动的路径(或轨迹),如图1所示.利用相似三角形可以证明;其次,证明△APN∽△AB1B2,列比例式可得B1B2的长.
【详解】
解:如图1所示,当点P运动至ON上的任一点时,设其对应的点B为Bi,连接AP,ABi,BBi,
∵AO⊥AB1,AP⊥ABi,
∴∠OAP=∠B1ABi,
又∵AB1=AO•tan30°,ABi=AP•tan30°,
∴AB1:AO=ABi:AP,
∴△AB1Bi∽△AOP,
∴∠B1Bi=∠AOP.
同理得△AB1B2∽△AON,
∴∠AB1B2=∠AOP,
∴∠AB1Bi=∠AB1B2,
∴点Bi在线段B1B2上,即线段B1B2就是点B运动的路径(或轨迹).
由图形2可知:Rt△APB1中,∠APB1=30°,
∴
Rt△AB2N中,∠ANB2=30°,
∴
∴
∵∠PAB1=∠NAB2=90°,
∴∠PAN=∠B1AB2,
∴△APN∽△AB1B2,
∴,
∵ON:y=﹣x,
∴△OMN是等腰直角三角形,
∴OM=MN=,
∴PN=,
∴B1B2=,
综上所述,点B运动的路径(或轨迹)是线段B1B2,其长度为.
故答案为:.
本题考查动点问题,用到了三角形的相似、和等腰三角形的性质,解题关键是找出图形中的相似三角形,利用对应边之比相等进行边长转换.
三、解答题(本大题共5个小题,共48分)
14、(1)作图见解析;(2)作图见解析.
【解析】
试题分析:(1)连接AC,由AE=CE得到∠EAC=∠ECA,由AD∥BC得∠DAC=∠ECA,则∠CAE=∠CAD,即AC平分∠DAE;
(2)连接AC、BD交于点O,连接EO,由平行四边形的性质及等腰三角形的性质可知EO为∠AEC的角平分线.
试题解析:
(1)连接AC,AC即为∠DAE的平分线;
如图1所示:
(2)①连接AC、BD交于点O,
②连接EO,EO为∠AEC的角平分线;
如图2所示.
15、(1)正方形;(2);(3)或.
【解析】
(1)根据形变后的图形为菱形,即可推断.
(2)由题意得形变比,再分别用代数式表示形变前和形变后的面积,计算比值即可.
(3)分以AB为底边和以AD为底边两种情况讨论,可求这个平行四边形的“形变比”.
【详解】
(1)∵形变后是菱形
∴AB=BC=CD=DA
则形变前的四条边也相等
∵四条边相等的矩形是正方形
∴形变前的图形是正方形
(2)根据题意知道:
S形变前=a×b=a2
S形变后=a×h=a××a=a2
∴
(3)当形变后四边形一个内角为30°时
此时应分两种情况讨论:
第一种:以AB为底边4×=2
∴这个四边形的形变比为:
第二种:以AD为底边
则
∴这个四边形的形变比为:.
本题考查了正方形、菱形的性质,正方形的面积和菱形的面积的求法,还利用了同底等高的三角形的面积相等,同时还训练了学生的理解能力,以及对新定义的理解和运用.
16、(1)详见解析;(2)当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4
【解析】
(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;
(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.
【详解】
(1)证明:连接CD,如图1所示.
∵为等腰直角三角形,,
D是AB的中点,
∴
在和中,
∴ ,
∴,
∵,
∴,
∴为等腰直角三角形.
∵O为EF的中点,,
∴,且,
∴四边形EDFG是正方形;
(2)解:过点D作于E′,如图2所示.
∵为等腰直角三角形,,
∴,点E′为AC的中点,
∴ (点E与点E′重合时取等号).
∴
∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4
本题考查了正方形的判定与性质、等腰直角三角形以及全等三角形的判定与性质,解题的关键是:(1)找出GD⊥EF且GD=EF;(2)根据正方形的面积公式找出4≤S四边形EDFG<1.
17、(1)见详解;(2)4+或4+.
【解析】
(1)根据关于x的方程x2-(m+2)x+(2m-1)=1的根的判别式的符号来证明结论.
(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.
【详解】
解:(1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,
∴在实数范围内,m无论取何值,(m-2)2+4≥4>1,即△>1.
∴关于x的方程x2-(m+2)x+(2m-1)=1恒有两个不相等的实数根.
(2)∵此方程的一个根是1,
∴12-1×(m+2)+(2m-1)=1,解得,m=2,
则方程的另一根为:m+2-1=2+1=3.
①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为1+3+=4+.
②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为1+3+=4+.
18、,原式
【解析】
先根据分式的运算法则进行化简,再求出不等式的负整数解,最后代入求出即可.
【详解】
∵
求解不等式,解得
又当,时分式无意义 ∴
∴原式
本题考查了分式的化简求值,解一元一次不等式,不等式的整数解等知识点,能求出符合题意的m值是解此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
利用解一元一次方程的一般步骤解出方程.
【详解】
ax﹣2x﹣5=0
(a﹣2)x=5
x=,
故答案为:.
本题考查了一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.
20、m≤3
【解析】
由二次根式的定义可得被开方数是非负数,即可得答案.
【详解】
解:由题意得:解得: ,故答案为:.
本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.
21、
【解析】
试题分析:直接运用完全平方公式分解即可.a2-6a+9=(a-3)2.
考点:因式分解.
22、2a.
【解析】
可根据三角形的性质:两边之和大于第三边.依此对原式进行去根号和去绝对值.
【详解】
∵a、b、c是△ABC三边的长
∴a+c-b>0,a+b-c>0
∴原式=|a-b+c|+|c-a-b|
=a+c-b+a+b-c
=2a.
故答案为:2a.
考查了二次根式的化简和三角形的三边关系定理.
23、<.
【解析】
分别把点A(-1,y1),点B(-2,y2)代入函数y=-3x,求出y1,y2的值,并比较出其大小即可.
【详解】
∵点A(-1,y1),点B(-2,y2)是函数y=-3x上的点,
∴y1=3,y2=6,
∵6>3,
∴y2>y1.
考点:一次函数图象上点的坐标特征.
二、解答题(本大题共3个小题,共30分)
24、-2
分别求出每一个不等式的解集,再找出两个解集的公共部分即不等式组的解集,再将它的解集在数轴上表示。
【详解】
解:不等式2x-3≥3(x-2)的解集是:x≤3
不等式<的解集是:x>-2
所以原不等式组的解集是:-2
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
25、.
【解析】
先提公因式2,再用完全平方公式进行分解即可。
【详解】
解:
.
本题考查了综合提公因式法和公式法进行因式分解,因式分解时要先提公因式再用公式分解。
26、(1);(2).
【解析】
(1)利用,可以就可以求出A点的坐标
(2)利用A,B的坐标求出一次函数的解析式,然后利用C点坐标求出反比例函数的表达式。
【详解】
解:(1),
而,
,
点坐标为;
(2)点坐标为,
把、代入得,即得,
一次函数解析式为;
把代入得,
点坐标为,
,
反比例函数解析式为
此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,数形结合思想是数学中重要的思想方法,做题时注意灵活运用.
题号
一
二
三
四
五
总分
得分
批阅人
PM2.5指数
150
155
160
165
天 数
3
2
1
1
2024-2025学年河北省沧州市献县数学九年级第一学期开学调研试题【含答案】: 这是一份2024-2025学年河北省沧州市献县数学九年级第一学期开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河北省沧州沧县联考九年级数学第一学期开学调研试题【含答案】: 这是一份2024-2025学年河北省沧州沧县联考九年级数学第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省甘南数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年甘肃省甘南数学九年级第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。