2024-2025学年河北省秦皇岛市青龙满族自治县九年级数学第一学期开学联考模拟试题【含答案】
展开
这是一份2024-2025学年河北省秦皇岛市青龙满族自治县九年级数学第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)对于一组统计数据1,1,6,5,1.下列说法错误的是( )
A.众数是1B.平均数是4C.方差是1.6D.中位数是6
2、(4分)如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为( )
A.8.3B.9.6C.12.6D.13.6
3、(4分)如图,在平面直角坐标系中,平行四边形OABC的边OA在x轴的正半轴上,A,C两点的坐标分别为(2,0),(1,2),点B在第一象限,将直线沿y轴向上平移m个单位.若平移后的直线与边BC有交点,则m的取值范围是 ( )
A.B.C.D.
4、(4分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )
A.5B.6C.8D.10
5、(4分)用配方法解关于的一元二次方程,配方后的方程可以是( )
A.B.
C.D.
6、(4分)如图,矩形ABCD中, E是AD的中点,将沿直线BE折叠后得到,延长BG交CD于点F若, 则FD的长为( )
A.3B.C.D.
7、(4分)若一个直角三角形的两边长为4和5,则第三边长为( )
A.3B.C.8D.3或
8、(4分)如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,长方形的顶点在坐标原点,顶点分别在轴,轴的正半轴上,,为边的中点,是边上的一个动点,当的周长最小时,点的坐标为_________.
10、(4分)已知,则 ___________ .
11、(4分)如图,中,,,,点是边上一定点,且,点是线段上一动点,连接,以为斜边在的右侧作等腰直角.当点从点出发运动至点停止时,点的运动的路径长为_________.
12、(4分)如图,有一四边形空地ABCD,AB⊥AD,AB=3,AD=4,BC=12,CD=13,则四边形ABCD的面积为_______.
13、(4分)如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD的最小值等于______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,,,为边上的高,过点作,过点作,与交于点,与交于点,连结.
(1)求证:四边形是矩形;
(2)求四边形的周长.
15、(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵8元,用300元购买甲种商品的件数恰好与用250元购买乙种商品的件数相同.
(1)求甲、乙两种商品每件的价格各是多少元?
(2)计划购买这两种商品共80件,且投入的经费不超过3600元,那么,最多可购买多少件甲种商品?
16、(8分)随着教育教学改革的不断深入,应试教育向素质教育转轨的力度不断加大,体育中考已成为初中毕业升学考试的重要内容之一。为了解某市九年级学生中考体育成绩情况,现从中随机抽取部分考生的体育成绩进行调查,并将调查结果绘制如下图表:
根据上面提供的信息,回答下列问题:
(1)表中a和b所表示的数分别为a=______,b=______;并补全频数分布直方图;
(2)甲同学说“我的体育成绩是此次抽样调查所得数据的中位数。”请问:甲同学的体育成绩在______分数段内?
(3)如果把成绩在40分以上(含40分)定为优秀那么该市12000名九年级考生中考体育成绩为优秀的约有多少名?
17、(10分)如图,在中,,点D在的延长线上,连接,E为的中点.请用尺规作图法在边上求作一点F,使得为的中位线.(保留作图痕迹,不写作法)
18、(10分)如图,在△ABC中,D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,等腰三角形中,,是底边上的高,则AD=________________.
20、(4分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式_____.
21、(4分)如图,点P是正比例函数y=x与反比例函数在第一象限内的交点,PA⊥OP交x轴于点A,则△POA的面积为_______.
22、(4分)在平面直角坐标系xOy中,已知A(0,1),B(1,0), C(3,1),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_____________.
23、(4分)如图,双曲线()与直线()的交点的横坐标为,2,那么当时,_______(填“”、“”或“”).
二、解答题(本大题共3个小题,共30分)
24、(8分)因式分解:
(1)2x3﹣8x;
(2)(x+y)2﹣14(x+y)+49
25、(10分)(1)计算:40372﹣4×2018×2019;
(2)将边长为1的一个正方形和一个底边为1的等腰三角形如图摆放,求△ABC的面积.
26、(12分)已知的三边长分别为,求证:是直角三角形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据中位数、众数、方差等的概念计算即可得解.
【详解】
A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;
B、由平均数公式求得这组数据的平均数为4,故此选项正确;
C、S2= [(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;
D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;
故选D.
考点:1.众数;2.平均数;1.方差;4.中位数.
2、B
【解析】
解:根据平行四边形的中心对称性得:OF=OE=1.1.∵▱ABCD的周长=(4+1)×2=14
∴四边形BCEF的周长=×▱ABCD的周长+2.2=9.2.故选B.
3、D
【解析】
设平移后的直线解析式为y=-2x+m.根据平行四边形的性质结合点O、A、C的坐标即可求出点B的坐标,再由平移后的直线与边BC有交点,可得出关于m的一元一次不等式组,解不等式组即可得出结论.
【详解】
解:设平移后的直线解析式为y=-2x+m.
∵四边形OABC为平行四边形,且点A(2,0),O(0,0),C(1,2),
∴点B(3,2).
∵平移后的直线与边BC有交点,
∴,
解得:4≤m≤1.
故选:D.
本题考查了平行四边形的性质、平移的性质以及两条直线相交的问题,解题的关键是找出关于m的一元一次不等式组.
4、C
【解析】
根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD的长,即可得出BC的长.
【详解】
在△ABC中,AB=AC,AD是∠BAC的平分线,
ADBC,BC=2BD.
∠ADB=90°
在Rt△ABD中,根据勾股定理得:BD===4
BC=2BD=2×4=8.
故选C.
本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.
5、A
【解析】
在本题中,把常数项−3移项后,应该在左右两边同时加上一次项系数−2的一半的平方.
【详解】
解:把方程x2−2x−3=0的常数项移到等号的右边,得到x2−2x=3,
方程两边同时加上一次项系数一半的平方,得到x2−2x+1=3+1,
配方得(x−1)2=1.
故选:A.
本题考查了配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
6、C
【解析】
根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.
【详解】
∵E是AD的中点,
∴AE=DE,
∵△ABE沿BE折叠后得到△GBE
∴AE=EG,AB=BG,
∴ED=EG,
∵在矩形ABCD中,
∴∠A=∠D=90°,
∴∠EGF=90°,
∵在Rt△EDF和Rt△EGF中,
,
∴Rt△EDF≌Rt△EGF(HL),
∴DF=FG,
设DF=x,则BF=6+x,CF=6-x,
在Rt△BCF中,102+(6-x)2=(6+x)2,
解得x=.
故选C.
本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件ED=EG是解题的关键.
7、D
【解析】
由于直角三角形的斜边不能确定,故应分5是直角边或5是斜边两种情况进行讨论.
【详解】
当5是直角边时,则第三边=;
当5是斜边时,则第三边=.
综上所述,第三边的长是或1.
故选D.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
8、A
【解析】
解:∵AE平分∠BAD,
∴∠DAE=∠BAE;
又∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BEA=∠DAE=∠BAE,
∴AB=BE=6,
∵BG⊥AE,垂足为G,
∴AE=2AG.
在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,
∴AG==2,
∴AE=2AG=4;
∴S△ABE=AE•BG=.
∵BE=6,BC=AD=9,
∴CE=BC﹣BE=9﹣6=3,
∴BE:CE=6:3=2:1,
∵AB∥FC,
∴△ABE∽△FCE,
∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.
故选A.
本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (1,0)
【解析】
作点D关于x轴的对称点D′,连接CD′与x轴交于点E,用待定系数法,求出直线CD′的解析式,然后求得与x轴的交点坐标即可.
【详解】
作点D关于x轴的对称点D′,连接CD′与x轴交于点E,
∵OB=4,OA=3,D是OB的中点,
∴OD=2,则D的坐标是(0,2),C的坐标是(3,4),
∴D′的坐标是(0,-2),
设直线CD′的解析式是:y=kx+b(k≠0),
则
解得:,
则直线的解析式是:y=2x-2,
在解析式中,令y=0,得到2x-2=0,
解得x=1,
则E的坐标为(1,0),
故答案为:(1,0).
本题考查了路线最短问题,以及待定系数法求一次函数的解析式,正确作出E的位置是解题的关键.
10、
【解析】
将二次根式化简代值即可.
【详解】
解:
所以原式.
故答案为:
本题考查了二次根式的运算,将二次根式转化为和已知条件相关的式子是解题的关键.
11、
【解析】
如图,连接CF,作FM⊥BC于M,FN⊥AC于N.证明△FNA≌△FME(AAS),推出FM=FM,AN=EM,推出四边形CMFN是正方形,推出点F在射线CF上运动(CF是∠ACB的角平分线),求出两种特殊位置CF的长即可解决问题.
【详解】
如图,连接CF,作FM⊥BC于M,FN⊥AC于N.
∵∠FNC=∠MCN=∠FMC=90°,
∴四边形CMFN是矩形,
∴∠MFN=∠AFE=90°,
∴∠AFN=∠MFE,
∵AF=FE,∠FNA=∠FME=90°,
∴△FNA≌△FME(AAS),
∴FM=FM,AN=EM,
∴四边形CMFN是正方形,
∴CN=CM,CF=CM,∠FCN=∠FCM=45°,
∵AC+CE=CN+AN+CM-EM=2CM,
∴CF= (AC+CE).
∴点F在射线CF上运动(CF是∠ACB的角平分线),
当点E与D重合时,CF=(AC+CD)=2,
当点E与B重合时,CF=(AC+CB)=,
∵-2= ,
∴点F的运动的路径长为.
故答案为:.
此题考查全等三角形的判定与性质,等腰直角三角形的性质,解题关键在于灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.
12、1
【解析】
先根据勾股定理求出BD,进而判断出△BCD是直角三角形,最后用面积的和即可求出四边形ABCD的面积.
【详解】
如图,连接BD,
在Rt△ABD中,AB=3,DA=4,
根据勾股定理得,BD=5,
在△BCD中,BC=12,CD=13,BD=5,
∴BC2+BD2=122+52=132=CD2,
∴△BCD为直角三角形,
∴S四边形ABCD=S△ABD+S△BCD
=AB∙AD+BC∙BD
=×3×4+×12×5
=1
故答案为:1.
此题主要考查了勾股定理及逆定理,三角形的面积公式,解本题的关键是判断出△BCD是直角三角形.
13、
【解析】
过点P作PE⊥AD交AD的延长线于点E,根据四边形ABCD是平行四边形,得到 AB∥CD,推出PE=PD,由此得到当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,利用∠DAB=30°,∠AEP=90°,AB=6求出PB+PE的最小值=AB=3,得到2PB+ PD的最小值等于6.
【详解】
过点P作PE⊥AD交AD的延长线于点E,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EDC=∠DAB=30°,
∴PE=PD,
∵2PB+ PD=2(PB+PD)=2(PB+PE),
∴当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,
∵∠DAB=30°,∠AEP=90°,AB=6,
∴PB+PE的最小值=AB=3,
∴2PB+ PD的最小值等于6,
故答案为:6.
此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD转化为三点共线的形式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见详解;(2)
【解析】
(1)利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.
(2)在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得BD的长度,即可得出结果.
【详解】
(1)证明:∵AE∥BC,DE∥AC,
∴四边形AEDC是平行四边形.
∴AE=CD.
在△ABC中,AB=AC,AD为BC边上的高,
∴∠ADB=90°,BD=CD.
∴BD=AE.
∴四边形AEBD是矩形.
(2)解:在Rt△ADC中,∠ADB=90°,AC=9,BD=CD=BC=3,
∴AD=.
∴四边形AEBD的周长=.
本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.
15、 (1)甲,乙两种商品每件的价格各为48,40元;(2)最多可购买50件甲种商品
【解析】
(1)根据题意:用300元购买甲种商品的件数恰好与用250元购买乙种商品的件数相同,设立未知数,建立方程解出来即可
(2)根据经费不超过3600元建立不等式关系,解出即可
【详解】
解:(1)设每件乙种商品的价格为元,则每件甲种商品的价格为元,
根据题意,得,
解得.
经检验: 是原方程的解
即:甲,乙两种商品每件的价格各为48,40元.
(2) 设购买甲种商品件,则购买乙种商品件.
由题意知:
解得:.
即:最多可购买50件甲种商品.
本题考查分式方程的应用题和不等式应用问题,关键在于找到等量关系,根据等量关系建立方程或者不等式是关键.
16、 (1)a=108,b=0.1;补全频数分布直方图见解析; (2)40≤x
相关试卷
这是一份2024-2025学年河北省廊坊广阳区七校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河北省邯郸市名校数学九年级第一学期开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河北省沧州青县联考九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。