2024-2025学年河南省各地(部分地区)九上数学开学监测试题【含答案】
展开
这是一份2024-2025学年河南省各地(部分地区)九上数学开学监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形ABCD中,AB=10, BC=5 .若点M、N分别是线段ACAB上的两个动点,则BM+MN的最小值为( )
A.10B.8C.5D.6
2、(4分)如图在平面直角坐标系中若菱形的顶点的坐标分别为,点在轴上,则点的坐标是( )
A.B.C.D.
3、(4分)二次根式有意义的条件是( )
A.x<2B.x<﹣2C.x≥﹣2D.x≤2
4、(4分)如图,菱形的边长为是边的中点,是边上的一个动点,将线段绕着逆时针旋转,得到,连接,则的最小值为( )
A.B.C.D.
5、(4分)要使二次根式有意义,则x的取值范围是( )
A.x3D.x≥3
6、(4分)下列各组线段能构成直角三角形的是( )
A.B.C.D.
7、(4分)通过估算,估计+1的值应在( )
A.2~3之间B.3~4之间C.4~5之间D.5~6之间
8、(4分)两个相似三角形的最短边分别为4cm和2cm它们的周长之差为12cm,那么大三角形的周长为( )
A.18cmB.24cmC.28cmD.30cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个正数的平方根分别是x+1和x﹣3,则这个正数是____________
10、(4分)在平面直角坐标系中,点P(a-1,a)是第二象限内的点,则a的取值范围是__________。
11、(4分)分解因式:=________.
12、(4分)已知双曲线经过点(-1,2),那么k的值等于_______.
13、(4分)计算: =_______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0),将△ABC绕原点O顺时针旋转90°得到△A' B' C'.
(1)画出△A’ B’ C’,并直接写出点A的对应点A' 的坐标;
(2)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.
15、(8分)如图,矩形的对角线交于点,且.
(1)求证:四边形是菱形;
(2)若,求菱形的面积.
16、(8分)如图,在□ABCD中,∠BAD的平分线交CD于点E,连接BE并延长交AD延长线于点F,若AB=AF.
(1)求证:点D是AF的中点;
(2)若∠F=60°,CD=6,求□ABCD的面积.
17、(10分)如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF交于点H.
(1)求证:四边形EGFH为平行四边形;
(2)当= 时,四边形EGFH为矩形.
18、(10分)解方程:=+1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是_______小时.
20、(4分)不等式4﹣3x>2x﹣6的非负整数解是_____.
21、(4分)若,且,则的值是__________.
22、(4分)如图,直线y=kx+3经过点A(1,2),则它与x轴的交点B的坐标为____.
23、(4分)若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简:,再从中选取一个合适的代入求值.
25、(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,BC=10cm,AB=6cm,点Q从点A出发以1 cm/s的速度向点D运动,点P从点B出发以2 cm/s的速度向点C运动,P,Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t(s)
(1)直接写出:QD=______cm,PC=_______cm;(用含t的式子表示)
(2)当t为何值时,四边形PQDC为平行四边形?
(3)若点P与点C不重合,且DQ≠DP,当t为何值时,△DPQ是等腰三角形?
26、(12分)已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.
(1)求证:BD=2CD;
(2)若CD=2,求△ABD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,EF就是所求的线段.
【详解】
解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,
AC=5,
AC边上的高为2,所以BE=4.
∵△ABC∽△EFB,
∴,即
EF=1.
故选B.
考点:轴对称-最短路线问题.
2、B
【解析】
首先根据菱形的性质求出AB的长度,再利用勾股定理求出DO的长度,进而得到点C的坐标.
【详解】
∵菱形ABCD的顶点A、B的坐标分别为(-6,0)、(4,0),点D在y轴上,
∴AB=AO+OB=6+4=10,
∴AD=AB=CD=10,
∴,
∴点C的坐标是:(10,8).
故选:B.
本题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO的长度.
3、C
【解析】
根据被开方数大于等于0列式计算即可得解.
【详解】
由题意得:x+1≥0,解得:x≥﹣1.
故选C.
本题考查了的知识点为:二次根式有意义的条件是被开方数是非负数.
4、B
【解析】
取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;先证明E点与E'点重合,再在Rt△EBC中,EB=2,BC=4,求EC的长.
【详解】
取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B
,
此时CE的长就是GB+GC的最小值;
∵MN∥AD,
∴HM=AE,
∵HB⊥HM,AB=4,∠A=60°,
∴MB=2,∠HMB=60°,
∴HM=1,
∴AE'=2,
∴E点与E'点重合,
∵∠AEB=∠MHB=90°,
∴∠CBE=90°,
在Rt△EBC中,EB=2,BC=4,
∴EC=2,
故选A.
本题考查菱形的性质,直角三角形的性质;确定G点的运动轨迹,是找到对称轴的关键.
5、B
【解析】
分析:根据二次根式有意义的条件回答即可.
详解:由有意义,可得3-x≥0,解得:x≤3.故选B.
点睛:本题考查了二次根式有意义的条件,解题的关键是知道二次根式有意义,被开方数为非负数.
6、D
【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、12+22≠22,不能构成直角三角形;
B、72+122≠132,不能构成直角三角形;
C、52+82≠102,不能构成直角三角形;
D、,能构成直角三角形.
故选:D.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.
7、B
【解析】
先估算出在和之间,即可解答.
【详解】
,
,
,
故选:.
本题考查了估算无理数的大小,解决本题的关键是确定在哪两个数之间,题型较好,难度不大.
8、B
【解析】
利用相似三角形周长的比等于相似比得到两三角形的周长的比为2:1,于是可设两三角形的周长分别为2xcm,xcm,所以2x﹣x=12,然后解方程求出x后,得出2x即可.
【详解】
解:∵两个相似三角形的最短边分别为4cm和2cm,
∴两三角形的周长的比为4:2=2:1,
设两三角形的周长分别为2xcm,xcm,
则2x﹣x=12,
解得x=12,
所以2x=24,
即大三角形的周长为24cm.
故选:B.
本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据正数的两个平方根互为相反数列出关于x的方程,解之可得.
【详解】
根据题意知x+1+x-3=0,
解得:x=1,
∴x+1=2
∴这个正数是22=1
故答案为:1.
本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.
10、0
相关试卷
这是一份2024-2025学年合肥市包河数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广西贺州市数学九上开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省阳江市四校九上数学开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。