年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年河南省鹤壁市、淇县数学九年级第一学期开学综合测试试题【含答案】

    2024-2025学年河南省鹤壁市、淇县数学九年级第一学期开学综合测试试题【含答案】第1页
    2024-2025学年河南省鹤壁市、淇县数学九年级第一学期开学综合测试试题【含答案】第2页
    2024-2025学年河南省鹤壁市、淇县数学九年级第一学期开学综合测试试题【含答案】第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年河南省鹤壁市、淇县数学九年级第一学期开学综合测试试题【含答案】

    展开

    这是一份2024-2025学年河南省鹤壁市、淇县数学九年级第一学期开学综合测试试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,是一钢架,且,为使钢架更加牢固,需在其内部添加-一些钢管、、,添加的钢管都与相等,则最多能添加这样的钢管( )
    A.根B.根C.根D.无数根
    2、(4分)一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成( )
    A.10组B.9组C.8组D.7组
    3、(4分)如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是( )
    A.B.C.D.
    4、(4分)如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是( )
    A.40°B.50°C.60°D.70°
    5、(4分)下面的两个三角形一定全等的是( )
    A.腰相等的两个等腰三角形
    B.一个角对应相等的两个等腰三角形
    C.斜边对应相等的两个直角三角形
    D.底边相等的两个等腰直角三角形
    6、(4分)下列标识中,既是轴对称图形,又是中心对称图形的是()
    A.B.C.D.
    7、(4分)下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是( )
    A.B.C.D.
    8、(4分)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是( )
    A.(1+x)2=B.(1+x)2=
    C.1+2x=D.1+2x=
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为 米.
    10、(4分)气象观测小组进行活动,一号探测气球从海拔5米处出发,以1m/min速度上升,气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为___.
    11、(4分)将反比例函数的图像绕着原点O顺时针旋转45°得到新的双曲线图像(如图1所示),直线轴,F为x轴上的一个定点,已知,图像上的任意一点P到F的距离与直线l的距离之比为定值,记为e,即.
    (1)如图1,若直线l经过点B(1,0),双曲线的解析式为,且,则F点的坐标为__________.
    (2)如图2,若直线l经过点B(1,0), 双曲线的解析式为,且,P为双曲线在第一象限内图像上的动点,连接PF,Q为线段PF上靠近点P的三等分点,连接HQ,在点P运动的过程中,当时,点P的坐标为__________.
    12、(4分)如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积为2,则k的值为______________.
    13、(4分)计算-的结果是_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.
    (1)写出BE与AF之间的关系,并证明你的结论;
    (2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长;
    (3)如图3,在(2)的条件下,作FQ∥DG交AB于点Q,请直接写出FQ的长.
    15、(8分)如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB
    (1)求证:四边形ABCD是矩形;
    (2)若AB=5,∠AOB=60°,求BC的长.
    16、(8分)如图,在平面直角坐标系中,△ABC的顶点A、B分别落在x轴、y轴的正半轴上,顶点C在第一象限,BC与x轴平行.已知BC=2,△ABC的面积为1.
    (1)求点C的坐标.
    (2)将△ABC绕点C顺时针旋转90°,△ABC旋转到△A1B1C的位置,求经过点B1的反比例函数关系式.
    17、(10分)如图,矩形ABCD的对角线AC、BD相交于点O,点E、F在BD上,OE=OF.
    (1)求证:AE=CF.
    (2)若AB=2,∠AOD=120°,求矩形ABCD的面积.
    18、(10分)2019 年 7 月 1 日,《上海市生活垃圾管理条例》正式实施,生活垃圾按照“可回收物”、 “有害垃圾”、“湿垃圾”、“干垃圾”的分类标准.没有垃圾分类和未指定投放到指定垃圾桶内等会被罚款和行政处罚.垃圾分类制度即将在全国范围内实施,很多商家推出售卖垃圾分类桶,某商店经销垃圾分类桶.现有如下信息:
    信息 1:一个垃圾分类桶的售价比进价高 12 元;
    信息 2:卖 3 个垃圾分类桶的费用可进货该垃圾分类桶 4 个;
    请根据以上信息,解答下列问题:
    (1)该商品的进价和售价各多少元?
    (2)商店平均每天卖出垃圾分类桶 16 个.经调查发现,若销售单价每降低 1 元,每天可多售出 2 个.为了使每天获取更大的利润,垃圾分类桶的售价为多少元时,商店每天获取的利润最大?每天的最大利润是多少?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)(1)____________;(2)=____________.
    20、(4分)如图,边长为5的菱形ABCD中,对角线AC长为6,菱形的面积为______.
    21、(4分)定义:等腰三角形的顶角与其一个底角的度数的比值称为这个等腰三角形的“特征值”.若等腰中,,则它的特征值__________.
    22、(4分)函数中,自变量的取值范围是__________.
    23、(4分)如图,小明作出了边长为2的第1个正△A1B1C1 , 算出了正△A1B1C1的面积. 然后分别取△A1B1C1的三边中点A2、B2、C2 , 作出了第2个正△A2B2C2 , 算出了正△A2B2C2的面积. 用同样的方法,作出了第3个正△A3B3C3 , 算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是_______,第n个正△AnBnCn的面积是______
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:
    (1)本次抽测的男生人数为 ,图①中m的值为 ;
    (2)求本次抽测的这组数据的平均数、众数和中位数;
    (3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.
    25、(10分)如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.
    (1)求抛物线的解析式;
    (2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值;
    (3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
    26、(12分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.
    (1)求甲、乙两种商品每件的价格各是多少元?
    (2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    因为每根钢管的长度相等,可推出图中的5个三角形都是等腰三角形,再根据等腰三角形的性质和三角形的外角性质,计算出最大的∠OQB的度数(必须≤90°),就可得出钢管的根数.
    【详解】
    解:如图所示,∠AOB=15°,
    ∵OE=FE,∴∠OFE=∠AOB=15°,
    ∴∠GEF=15°×2=30°,
    ∵EF=GF,所以∠EGF=30°,
    ∴∠GFH=15°+30°=45°,
    ∵GH=GF,
    ∴∠GHF=45°,∠HGA=45°+15°=60°,
    ∵GH=HQ,
    ∴∠GQH=60°,∠QHB=60°+15°=75°,
    ∵QH=QB,∴∠QBH=75°,
    故∠OQB=180°-15°-75°=90°,
    再作与BQ相等的线段时,90°的角不能是底角,则最多能作出的钢管是:EF、FG、GH、HQ、QB,共有5根.
    故选B.
    本题考查了等腰三角形的性质和三角形外角的性质,弄清题意,发现规律,正确求得图中各角的度数是解题的关键.
    2、A
    【解析】
    在这组数据中最大值为143,最小值为50,它们的差为143-50=93,已知组距为10,可知93÷10=9.3,故可以分成10组.
    故选A.
    此题主要考查了频数直方图的组距,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.
    3、B
    【解析】
    取DC的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、E、D三点共线时,点D到点O的距离最大,再根据勾股定理求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.
    【详解】
    取中点,连接、、,


    在中,利用勾股定理可得.
    在中,根据三角形三边关系可知,
    当、、三点共线时,最大为.
    故选:.
    本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.
    4、A
    【解析】
    作DG⊥AB于G,DH⊥BC于H,根据角平分线的性质得到DH=DG,证明Rt△DEG≌Rt△DFH,得到∠DEG=∠DFH,根据互为邻补角的性质得到答案.
    【详解】
    作DG⊥AB于G,DH⊥BC于H,
    ∵D是∠ABC平分线上一点,DG⊥AB,DH⊥BC,
    ∴DH=DG,
    在Rt△DEG和Rt△DFH中,

    ∴Rt△DEG≌Rt△DFH(HL),
    ∴∠DEG=∠DFH,又∠DEG+∠BED=180°,
    ∴∠BFD+∠BED=180°,
    ∴∠BFD的度数=180°-140°=40°,
    故选:A.
    此题考查角平分线的性质,全等三角形的判定与性质,邻补角的性质,解题关键在于作辅助线
    5、D
    【解析】
    解:A.错误,腰相等的两个等腰三角形,没有明确顶角和底角的度数,所以不一定全等.
    B.错误,一个角对应相等的两个等腰三角形,没有明确边的长度是否相等,所以不一定全等.
    C.错误,斜边对应相等的两个直角三角形,没有明确直角三角形的直角边大小,所以不一定全等.
    D.正确,底边相等的两个等腰直角三角形,明确了各个角的度数,以及一个边,符合ASA或AAS,所以,满足此条件的三角形一定全等.
    故选D.
    点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    6、A
    【解析】
    试题分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形性质做出判断.①既是中心对称图形,也是轴对称图形,故此选项正确;②不是中心对称图形,是轴对称图形,故此选项错误;③不是中心对称图形,是轴对称图形,故此选项错误;④是中心对称图形,不是轴对称图形,故此选项正确.
    故选A.
    考点:中心对称图形;轴对称图形.
    7、A
    【解析】
    根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项正确;
    B、是中心对称图形,故此选项错误;
    C、是中心对称图形,故此选项错误;
    D、是中心对称图形,故此选项错误;
    故选:A.
    此题主要考查了中心对称图形的定义,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    8、B
    【解析】
    股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.
    【详解】
    解:假设股票的原价是1,平均增长率为.
    则90%(1+x)2=1,
    即(1+x)2=,
    故选B.
    此题考查增长率的定义及由实际问题抽象出一元二次方程的知识,这道题的关键在于理解:价格上涨x后是原来价格的(1+x)倍.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    试题分析:设小道进出口的宽度为x米,依题意得(32-2x)(22-x)=532,
    整理,得x2-35x+3=2.
    解得,x1=1,x2=3.
    ∵3>32(不合题意,舍去),
    ∴x=1.
    答:小道进出口的宽度应为1米.
    考点:一元二次方程的应用.
    10、y=x+1.
    【解析】
    直接利用原高度+上升的时间×1=海拔高度,进而得出答案.
    【详解】
    气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为:y=x+1.
    故答案为:y=x+1.
    此题主要考查了函数关系式,正确表示出上升的高度是解题关键.
    11、F(4,0)
    【解析】
    (1)令y=0求出x的值,结合e=2可得出点A的坐标,由点B的坐标及e=2可求出AF的长度,将其代入OF=OB+AB+AF中即可求出点F的坐标;
    (2)设点P的坐标为(x,),则点H的坐标为(1,),由Q为线段PF上靠近点P的三等分点,可得出点Q的坐标为(x+,),利用两点间的距离公式列方程解答即可;
    【详解】
    解:(1)如图:
    当y=0时,±,
    解得:x1=2,x2=-2(舍去),
    ∴点A的坐标为(2,0).
    ∵点B的坐标为(1,0),
    ∴AB=1.
    ∵e=2,
    ∴,
    ∴AF=2,
    ∴OF=OB+AB+AF=4,
    ∴F点的坐标为(4,0).
    故答案为:(4,0).
    (2)设点P的坐标为(x,),则点H的坐标为(1,).
    ∵点Q为线段PF上靠近点P的三等分点,点F的坐标为(5,0),
    ∴点Q的坐标为(x+,).
    ∵点H的坐标为(1,),HQ=HP,
    ∴(x+-1)2+(-)2=[(x-1)]2,
    化简得:15x2-48x+39=0,
    解得:x1=,x2=1(舍去),
    ∴点P的坐标为(,).
    故答案为:(,).
    本题考查了两点间的距离、解一元二次方程以及反比例函数的综合应用,解题的关键是:(1)利用特殊值法(点A和点P重合),求出点F的坐标;(2)设出点P的坐标,利用两点间的距离公式找出关于x的一元二次方程;
    12、1
    【解析】
    设反比例函数的解析式是:y=,设A的点的坐标是(m,n),则AB=m,OB=n,mn=k.根据三角形的面积公式即可求得mn的值,即可求得k的值.
    【详解】
    设反比例函数的解析式是:y=,设A的点的坐标是(m,n).
    则AB=m,OB=n,mn=k.
    ∵△ABP的面积为2,
    ∴AB•OB=2,即mn=2
    ∴mn=1,则k=mn=1.
    故答案是:1.
    此题考查反比例函数系数k的几何意义,解题关键在于掌握过双曲线上的任意一点分别一条坐标轴作垂线,连接点与原点,与坐标轴围成三角形的面积是|k|.
    13、2
    【解析】
    先利用算术平方根和立方根进行化简,然后合并即可.
    【详解】
    解:原式=4-2=2
    故答案为:2
    本题考查了算术平方根和立方根的运算,掌握算术平方根和立方根是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)BE=AF,BE⊥AF;(2)GD是∠EGF的角平分线,证明见解析,GD=;(3)FQ=.
    【解析】
    (1)根据已知条件可先证明△BAE≌△ADF,得到BE=AF,再由角的关系得到∠AGE=90°从而证明BE⊥AF;
    (2)过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,根据勾股定理和三角形的面积相等求出DN,然后证明△AEG≌△DEM,得到DN=DM,再根据角平分线的性质可证明GD平分∠EGF,进而在等腰直角三角形中求得GD;
    (3)过点G作GH∥AQ交FQ于H,可得到四边形DFHG是平行四边形,进而可得△FGH∽△FAQ,然后根据三角形相似的性质可求得FQ.
    【详解】
    解:(1)BE=AF,BE⊥AF,理由:
    四边形ABCD是正方形,
    ∴BA=AD=CD,∠BAE=∠D=90°,
    ∵DE=CF,
    ∴AE=DF,
    ∴△BAE≌△ADF(SAS),
    ∴BE=AF,∠ABE=∠DAF,
    ∵∠ABE+∠AEB=90°,
    ∴∠DAF+∠AEB=90°,
    ∴∠AGE=90°,
    ∴BE⊥AF
    (2)如图2,过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,
    在Rt△ADF中,根据勾股定理得,AF=,
    ∵S△ADF=AD×FD=AF×DN,
    ∴DN=,
    ∵△BAE≌△ADF,
    ∴S△BAE=S△ADF,
    ∵BE=AF,
    ∴AG=DN,
    ∵AE=DE,∠MED=∠AEG,∠DME=∠AGM,
    ∴△AEG≌△DEM(AAS),
    ∴AG=DM,
    ∴DN=DM,
    ∵DM⊥BE,DN⊥AF,
    ∴GD平分∠MGN,即GD平分∠EGF,
    ∴∠DGN=∠MGN=45°,
    ∴△DGN是等腰直角三角形,
    ∴GD=DN=;
    (3)如图3,由(2)知,GD=,AF=,AG=DN=,
    ∴FG=AF﹣AG=,
    过点G作GH∥AQ交FQ于H,
    ∴GH∥DF,
    ∵FQ∥DG,
    ∴四边形DFHG是平行四边形,
    ∴FH=DG=,
    ∵GH∥AQ,
    ∴△FGH∽△FAQ,
    ∴,
    ∴ ,
    ∴FQ=.
    全等三角形的判定和性质、勾股定理、角平分线的性质、平行四边形的判定和性质都是本题的考点,此题综合性比较强,熟练掌握基础知识并作出合适的辅助线是解题的关键.
    15、(1)证明见解析;(2)
    【解析】
    (1)根据平行四边形的性质得到OA=OC=AC,OB=OD=BD,推出AC=BD,于是得到结论;
    (2)根据已知条件得到△AOB是等边三角形,求得OA=OB=AB=5,解直角三角形即可得到结论.
    【详解】
    (1)∵四边形ABCD 是平行四边形,
    ∴OA=OC=AC,OB=OD=BD,
    ∵OA=OB,
    ∴AC=BD,
    ∴平行四边形ABCD是矩形;
    (2)∵OA=OB,∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴OA=OB=AB=5,
    ∵四边形ABCD是矩形,
    ∴AC=2OA=10,∠ABC=90°,
    ∴.
    本题考查了矩形的判定和性质,勾股定理,平行四边形的性质,熟练掌握矩形的判定和性质定理是解题的关键.
    16、(1)C(2,1);(2)经过点B1的反比例函数为y=.
    【解析】
    (1)过点C作CD⊥x轴于点D,BC与x轴平行可知CD⊥BC,即可求出CD的长,进而得出C点坐标;
    (2)由图形旋转的性质得出CB1的长,进而可得出B1的坐标,设经过点B1(2,3)的反比例函数为,把B1的坐标代入即可得出k的值,从而得出反比例函数的解析式.
    【详解】
    解:(1)作CD⊥x轴于D.

    ∵BC与x轴平行,
    ∴S△ABC=BC•CD,
    ∵BC=2,S△ABC=1,
    ∴CD=1,
    ∴C(2,1);
    (2)∵由旋转的性质可知CB1=CB=2,
    ∴B1(2,3).
    设经过点B1(2,3)的反比例函数为,
    ∴3=,
    解得k=6,
    ∴经过点B1的反比例函数为y=.
    本题考查的是反比例函数综合题,涉及到图形旋转的性质及三角形的面积公式、用待定系数法求反比例函数的解析式,涉及面较广,难度适中.
    17、(1)见解析;(2)4
    【解析】
    (1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;
    (2)证出△AOB是等边三角形,得出OA=AB=2,AC=2OA=4,在Rt△ABC中,由勾股定理求出BC= =,即可得出矩形ABCD的面积.
    【详解】
    (1)证明:∵四边形ABCD是矩形,
    ∴OA=OC,
    在△AOE和△COF中,

    ∴△AOE≌△COF(SAS),
    ∴AE=CF;
    (2)解:∠AOD=120°,
    所以,∠AOB=60°,
    ∵OA=OC,OB=OD,AC=BD,
    ∴OA=OB,
    ∴△AOB是等边三角形,
    ∴OA=AB=2,
    ∴AC=2OA=4,
    在Rt△ABC中,BC=,
    ∴矩形ABCD的面积=AB•BC=2×2=4.
    此题考查全等三角形的判定与性质,矩形的性质,解题关键在于利用勾股定理进行计算
    18、(1)进价为36元,售价为48元;(2)当售价为46元时,商店每天获利最大,最大利润为:200元.
    【解析】
    (1)根据题意,设一个垃圾分类桶的进价为x元,则售价为(x+12)元,列出方程,解方程即可得到答案;
    (2)根据题意,可设每天获利为w,当垃圾分类桶的售价为y元时,每天获利w最大,然后列出方程,解出方程即可得到答案.
    【详解】
    解:(1)设一个垃圾分类桶的进价为x元,则售价为(x+12)元,则
    ,解得:,
    ∴售价为:36+12=48元.
    答:一个垃圾分类桶的进价为36元,售价为48元;
    (2)设每天获利为w,当一个垃圾分类桶的售价为y元时,每天获利最大,则

    整理得:;
    ∴当 时,商店每天获利最大,最大利润为:200元.
    该题以二次函数为载体,以二元一次方程组的应用、二次函数的性质及其应用为考查的核心构造而成;解题的关键是深入把握题意,准确找出命题中隐含的数量关系;灵活运用有关性质来分析、判断、解答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、5
    【解析】
    (1)根据二次根式的性质计算即可;
    (2)根据二次根式除法运算法则计算即可.
    【详解】
    解:(1);
    (2).
    故答案为:5;.
    此题主要考查了二次根式的性质和除法运算,正确掌握相关运算法则是解题关键.
    20、1
    【解析】
    根据菱形的对角线互相垂直且互相平分可得出对角线BD的长度,进而根据对角线乘积的一半可得出菱形的面积.
    【详解】
    解:在菱形ABCD中,
    由题意得:B0==4,
    ∴BD=8,
    故可得菱形ABCD的面积为×8×6=1.
    故答案为1.
    本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质.
    21、
    【解析】
    可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解
    【详解】
    解:
    ①当为顶角时,等腰三角形两底角的度数为:
    ∴特征值
    ②当为底角时,顶角的度数为:
    ∴特征值
    综上所述,特征值为或
    故答案为或
    本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知的底数,要进行判断是底角或顶角,以免造成答案的遗漏.
    22、x≥0且x≠1
    【解析】
    根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.
    【详解】
    解:由题意得,x≥0且x−1≠0,
    解得x≥0且x≠1.
    故答案为:x≥0且x≠1.
    本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
    23、
    【解析】
    根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是.
    【详解】
    正△A1B1C1的面积是×22==,
    ∵△A2B2C2与△A1B1C1相似,并且相似比是1:2,
    ∴面积的比是1:4,
    则正△A2B2C2的面积是× ==;
    ∵正△A3B3C3与正△A2B2C2的面积的比也是1:4,
    ∴面积是×==;
    依此类推△AnBnCn与△An﹣1Bn﹣1Cn﹣1的面积的比是1:4,
    第n个三角形的面积是.
    故答案是: , .
    考查了相似三角形的判定与性质,以及等边三角形的性质,找出题中的规律是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.
    【解析】
    分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可;
    (Ⅱ)根据平均数、众数、中位数的定义求解可得;
    (Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.
    详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=×100%=1%,所以m=1.
    故答案为50、1;
    (Ⅱ)平均数为=5.16次,众数为5次,中位数为=5次;
    (Ⅲ)×350=2.
    答:估计该校350名九年级男生中有2人体能达标.
    点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    25、(1);(2)点E的坐标是(2,1)时,△BEC的面积最大,最大面积是1;(1)P的坐标是(﹣1,)、(5,)、(﹣1,).
    【解析】
    解:(1)∵直线y=﹣x+1与x轴交于点C,与y轴交于点B,
    ∴点B的坐标是(0,1),点C的坐标是(4,0),
    ∵抛物线y=ax2+x+c经过B、C两点,
    ∴,解得,
    ∴y=﹣x2+x+1.
    (2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,

    ∵点E是直线BC上方抛物线上的一动点,∴设点E的坐标是(x,﹣x2+x+1),则点M的坐标是(x,﹣x+1),∴EM=﹣x2+x+1﹣(﹣x+1)=﹣x2+x,∴S△BEC=S△BEM+S△MEC==×(﹣x2+x)×4=﹣x2+1x=﹣(x﹣2)2+1,
    ∴当x=2时,即点E的坐标是(2,1)时,△BEC的面积最大,最大面积是1.
    (1)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.
    ①如图2,

    由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+1上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM=
    ,∴AM所在的直线的斜率是:;∵y=﹣x2+x+1的对称轴是x=1,
    ∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+1),
    则,
    解得或,
    ∵x<0,∴点P的坐标是(﹣1,﹣).
    ②如图1,

    由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+1上,∴点M的坐标是(2,),
    又∵点A的坐标是(﹣2,0),∴AM=,
    ∴AM所在的直线的斜率是:;
    ∵y=﹣x2+x+1的对称轴是x=1,
    ∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+1),则,
    解得或,
    ∵x>0,∴点P的坐标是(5,﹣).
    ③如图4,

    由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+1上,
    ∴点M的坐标是(2,),
    又∵点A的坐标是(﹣2,0),∴AM=,
    ∵y=﹣x2+x+1的对称轴是x=1,
    ∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+1),

    解得,
    ∴点P的坐标是(﹣1,).
    综上,可得在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣1,﹣)、(5,﹣)、(﹣1,).
    本题考查二次函数综合题.
    26、(1)每件甲种商品价格为70元,每件乙种商品价格为60元;(2)该商店最多可以购进20件甲种商品
    【解析】
    (1)分别设出甲、乙两种商品的价格,根据“用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同”列出方程,解方程即可得出答案;
    (2)分别设出购进甲、乙两种商品的件数,根据“投入的经费不超过3200元”列出不等式,解不等式即可得出答案.
    【详解】
    解:(1)设每件乙种商品价格为元,则每件甲种 商品价格为()元,
    根据题意得:
    解得:.
    经检验,是原方程的解,
    则.
    答:每件甲种商品价格为元,每件乙种商品价格为元.
    (2)设购进甲种商品件,则购进乙种商品() 件,根据题意得:,
    解得:.
    该商店最多可以购进件甲种商品.
    本题考查的是分式方程在实际生活中的应用,认真审题,根据题意列出方程和不等式是解决本题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    2023年河南省鹤壁市淇县二模数学模拟试题:

    这是一份2023年河南省鹤壁市淇县二模数学模拟试题,共12页。试卷主要包含了如图,于点,已知是钝角,则,下列运算正确的是,如图,在中,一定正确的是等内容,欢迎下载使用。

    河南省鹤壁市淇县2023-2024学年数学九年级第一学期期末复习检测试题含答案:

    这是一份河南省鹤壁市淇县2023-2024学年数学九年级第一学期期末复习检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下图中几何体的左视图是等内容,欢迎下载使用。

    河南省鹤壁市、淇县2023-2024学年数学九年级第一学期期末联考试题含答案:

    这是一份河南省鹤壁市、淇县2023-2024学年数学九年级第一学期期末联考试题含答案,共8页。试卷主要包含了如图,是用棋子摆成的“上”字等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map