2024-2025学年河南省平顶山九年级数学第一学期开学检测试题【含答案】
展开
这是一份2024-2025学年河南省平顶山九年级数学第一学期开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式中从左到右的变形,是因式分解的是( )
A.a2b+ab2=ab(a+b)B.x2+x﹣5=(x﹣2)(x+3)+1
C.x2+1=x(x+)D.(a+3)(a﹣3)=a2﹣9
2、(4分)如图所示,在平行直角坐标系中,▱OMNP的顶点P坐标是(3,4),顶点M坐标是(4,0)、则顶点N的坐标是( )
A.N(7,4)B.N(8,4)C.N(7,3)D.N(8,3)
3、(4分)甲,乙两名选手参加长跑比赛,乙从起点出发匀速跑到终点,甲先快后慢,半个小时后找到适合自己的速度,匀速跑到终点,他们所跑的路程y(单位:km)随时间x(单位:h)变化的图象,如图所示,则下列结论错误的是( )
A.在起跑后1h内,甲在乙的前面
B.跑到1h时甲乙的路程都为10km
C.甲在第1.5时的路程为11km
D.乙在第2h时的路程为20km
4、(4分)用配方法解方程配方正确的是( )
A.B.C.D.
5、(4分)下列命题,其中正确的有( )
①平行四边形的两组对边分别平行且相等
②平行四边形的对角线互相垂直平分
③平行四边形的对角相等,邻角互补
④平行四边形只有一组对边相等,一组对边平行
A.1个B.2个C.3个D.4个
6、(4分)如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图象可得二元一次方程组的解是( )
A.B.C.D.
7、(4分)已知:等边三角形的边长为6cm,则一边上的高为( )
A.B.2C.3D.
8、(4分)使分式有意义的x的取值范围是( )
A.x≥1B.x≤1C.x≠1D.x>1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线(>0)与轴交于点(-1,0),关于的不等式>0的解集是_____________.
10、(4分)已知不等式组的解集是,则的值是的___.
11、(4分)体育张教师为了解本校八年级女生:“1分钟仰卧起坐”的达标情况,随机抽取了20名女生进行仰卧起坐测试.如图是根据测试结果绘制的频数分布直方图.如果这组数据的中位数是40次,那么仰卧起坐次数为40次的女生人数至少有__________人.
12、(4分)已知点在直线上,则=__________.
13、(4分)已知直线与直线平行且经过点,则__.
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读理解:
我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.
阅读下列材料,完成习题:
如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦(sine),记作sinA,即sinA=
例如:a=3,c=7,则sinA=
问题:在Rt△ABC中,∠C=90°
(1)如图2,BC=5,AB=8,求sinA的值.
(2)如图3,当∠A=45°时,求sinB的值.
(3)AC=2,sinB=,求BC的长度.
15、(8分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).
他们的各项成绩如下表所示:
(1)直接写出这四名候选人面试成绩的中位数;
(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;
(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.
16、(8分)计算:
(1)×.
(2).
17、(10分)武汉市某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示
(1) 求甲、乙两种收费方式的函数关系式;
(2) 当印刷多少份学案时,两种印刷方式收费一样?
18、(10分)某校八年级在一次广播操比赛中,三个班的各项得分如下表:
(1) 填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是_________;在动作准确方面最有优势的是_________班
(2) 如果服装统一、动作整齐、动作准确三个方面按20%、30%、50%的比例计算各班的得分,请通过计算说明哪个班的得分最高.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在正数范围内定义一种运算“※”,其规则为,如.根据这个规则可得方程的解为__________.
20、(4分)某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是______.
21、(4分)如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则△BEC的面积=__________________
22、(4分)方程=-1的根为________
23、(4分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________
二、解答题(本大题共3个小题,共30分)
24、(8分)我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面积.
(2)若每种植1平方米草皮需要200元,问总共需投入多少元?
25、(10分)计算:5÷﹣3+2.
26、(12分)(1)读读做做:教材中有这样的问题,观察下面的式子,探索它们的规律,=1-,=,=……用正整数n表示这个规律是______;
(2)问题解决:一容器装有1L水,按照如下要求把水倒出:第一次倒出L水,第二次倒出的水量是L水的,第三次倒出的水量是L水的,第四次倒出的水量是L水的,……,第n+1次倒出的水量是L水的,……,按照这种倒水方式,这1L水能否倒完?
(3)拓展探究:①解方程:+++=;
②化简:++…+.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据因式分解的格式要求及提公因式法和公式法进行求解,并逐一判断即可得解.
【详解】
A.,故此选项正确;
B.没把一个多项式转化成几个整式积的形式,不是因式分解,故此选项错误;
C.没把一个多项式转化成几个整式积的形式(含有分式),不是因式分解,故此选项错误;
D.是整式的乘法,不是因式分解,故此选项错误;
故选:A.
本题主要考查了因式分解的相关概念,熟练掌握因式分解的格式及公式法与提公因式法进行因式分解的方法是解决本题的关键.
2、A
【解析】
此题可过P作PE⊥OM,过点N作NF⊥OM,根据勾股定理求出OP的长度,则N点坐标便不难求出.
【详解】
过P作PE⊥OM,过点N作NF⊥OM,
∵顶点P的坐标是(3,4),
∴OE=3,PE=4,
∵四边形ABCD是平行四边形,
∴OE=MF=3,
∵4+3=7,
∴点N的坐标为(7,4).
故选A.
此题考查了平行四边形的性质,根据平行四边形的性质和点P的坐标,作出辅助线是解决本题的突破口.
3、C
【解析】
由图象即可判断A,B.通过计算可知甲在第1.5h时的行程为12km,故可判断C错误,求出乙2小时的路程即可判断D.
【详解】
由图象可知,在起跑后1h内,甲在乙的前面,故A正确;
跑到1h时甲乙的路程都为10km,故B正确;
∵y乙=10x,
当0.5<x<1.5时,y甲=4x+6,
x=1.5时,y甲=12,故C错误,
x=2时,y乙=20,故D正确,
故选C.
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
4、A
【解析】
本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.
【详解】
解:,
,
∴,
.
故选:.
此题考查配方法的一般步骤:
①把常数项移到等号的右边;
②把二次项的系数化为1;
③等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
5、B
【解析】
根据平行四边形的性质判断即可.
【详解】
解:①平行四边形的两组对边分别平行且相等,正确;②平行四边形的对角线互相平分,但不一定垂直,错误;③平行四边形的对角相等,邻角互补,正确;④平行四边形两组对边分别平行且相等,不是只有一组相等,一组平行,错误,正确的有2个.
故选B.
本题考查了平行四边形的性质,平行四边形的两组对边分别平行且相等,对角线互相平分,对角相等,邻角互补,熟练掌握平行四边形的性质是解题的关键.
6、A
【解析】
分析:本题利用一次函数与方程组的关系来解决即可.
解析:两个函数的交点坐标即为方程组的解,由图知P( -4,-2 ),∴方程组的解为.
故选A.
点睛:方程组与一次函数的关系:两条直线相交,交点坐标即为两个函数解析式组成的方程组的解.本体关键是要记得这个知识点,然后看图直接给出答案.
7、C
【解析】
根据等边三角形的性质三线合一求出BD的长,再利用勾股定理可求高.
【详解】
如图,AD是等边三角形ABC的高,
根据等边三角形三线合一可知BD=BC=3,
∴它的高AD==,
故选:C.
本题考查等边三角形的性质及勾股定理,较为简单,解题的关键是掌握勾股定理.直角三角形两条直角边的平方和等于斜边的平方.
8、C
【解析】
分式的分母不为零,即x-1≠1.
【详解】
解:当分母x-1≠1,即x≠1时,分式有意义;
故选:C.
从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;
(2)分式有意义⇔分母不为零;
(3)分式值为零⇔分子为零且分母不为零.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x>-1
【解析】
先根据一次函数y=ax+b的图象交x轴交于点(-1,0)可知,当x>-1时函数图象在x轴的上方,故可得出结论.
【详解】
∵直线y=ax+b(a>0)与x轴交于点(-1,0),由函数图象可知,当x>-1时函数图象在x轴的上方,
∴ax+b>0的解集是x>-1.
故答案为:x>-1.
本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.
10、-2
【解析】
先求出两个不等式的解集,再求其公共解,然后根据不等式组的解集列出求出a、b的值,再代入代数式进行计算即可得解.
【详解】
,
由①得,,
由②得,,
所以,不等式组的解集是,
不等式组的解集是,
,,
解得,,
所以,.
故答案为:.
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
11、1
【解析】
根据中位数的定义求解可得.
【详解】
解:∵这20个数据的中位数是第10、11个数据的平均数,且第10个、11个全部位于第三组(40≤x<10)内,
∴第10个、11个数据均为40,
∵小于40的有6个,
∴第7、8、9、10、11个数据一定为40,
∴仰卧起坐次数为40次的女生人数至少有1人,
故答案为:1.
本题主要考查频数分布直方图和中位数,解题的关键是掌握中位数的概念.
12、
【解析】
把代入解析式,解方程即可.
【详解】
将点代入直线的解析式,得4=3a+2,
∴.a=
故本题应填写:.
本题考查了点在函数图像上,掌握函数解析式的基本性质是解题的关键.
13、2
【解析】
由一次函数y=kx+b的图象与正比例函数y=2x的图象平行得到k=2,然后把点A(1,2)代入一次函数解析式可求出b的值.
【详解】
直线与直线平行,
,
,
把点代入得,解得;
,
故答案为:2
本题主要考查了两条直线相交或平行问题,待定系数法,解答此类题关键是掌握若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.
三、解答题(本大题共5个小题,共48分)
14、 (1);(2);(3)2.
【解析】
分析:(1)根据sinA=直接写结论即可;
(2)设AC=x,则BC=x,根据勾股定理得AB=,然后根据sinA=计算;
(3)先根据sinB=求出AB的值,再利用勾股定理求BC的值即可.
详解:(1)sinA=;
(2)在Rt△ABC中,∠A=45°,
设AC=x,则BC=x,AB=,
则sinB=;
(3)sinB=,则AB=4,
由勾股定理得:BC2=AB2-AC2 =16-12=4,
∴BC=2.
点睛:本题考查了信息迁移,勾股定理,正确理解在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦是解答本题的关键.
15、(1)这四名候选人面试成绩的中位数为89(分);(2)表中x的值为86;(3)以综合成绩排序确定所要招聘的前两名的人选是甲和丙.
【解析】
(1)根据中位数的概念计算;
(2)根据题意列出方程,解方程即可;
(3)根据加权平均数的计算公式分别求出余三名候选人的综合成绩,比较即可.
【详解】
(1)这四名候选人面试成绩的中位数为:=89(分);
(2)由题意得,x×60%+90×40%=87.6
解得,x=86,
答:表中x的值为86;
(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),
乙候选人的综合成绩为:84×60%+92×40%=87.2(分),
丁候选人的综合成绩为:88×60%+86×40%=87.2(分),
∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.
本题考查的是中位线、加权平均数,掌握中位数的概念、加权平均数的计算公式是解题的关键.
16、(1);(1)-1.
【解析】
(1)直接利用二次根式的乘法法则,进行化简,得出答案;
(1)先化简二次根式,进而计算得出答案.
【详解】
(1)原式= ×=;
(1)原式=(1﹣4)÷
=﹣1.
本题主要考查二次根式的性质和运算法则,掌握二次根式的性质和运算法则是解题的关键.
17、 (1) ,;(2) 300
【解析】
(1)设甲种收费的函数关系式=kx+b,乙种收费的函数关系式是,直接运用待定系数法就可以求出结论;
(2)由(1)的解析式可得,当时,得出结果.
【详解】
设甲种收费的函数关系式=kx+b,乙种收费的函数关系式是,
由题意,得,12=100 ,
解得: ,
∴ (x≥0), (x≥0).
(2) 由题意,得 当时, 0.1x+6=0.12x ,得x=300; 当x=300时,甲、乙两种方式一样合算.
本题主要考查待定系数法求一次函数的解析式的运用,本题属于运用函数的解析式解答方案设计的问题,解答时求出函数解析式是关键,要求学生
18、(1)89;八(1);(2)八(1)班得分最高.
【解析】
(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作准确的分数最高即可;
(2)利用加权平均数分别计算三个班的得分后即可得解.
【详解】
解:(1)服装统一方面的平均分为:=89分;
动作准确方面最有优势的是八(1)班;
故答案为:89;八(1);
(2)∵八(1)班的平均分为:=84.7分;
八(2)班的平均分为:=82.8分;
八(3)班的平均分为:=83.9分;
∴得分最高的是八(1)班.
本题考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
运算“※”的意思是两数的倒数之和.由于是在正数范围内,所以-2可看作※后面的x的系数,根据新定义列出式子计算即可.
【详解】
∵,
∴,
去分母得:,
解得:
经检验是原方程的解.
故答案为.
本题除了定义运算外,还考查简单的分式方程的解法.
20、23
【解析】当数据个数是奇数个时,中位数是最中间的数;当数据个数是偶数个时,中位数是最中间的两个数的平均数,由折线图可知,20本的有4人;21本的有8人;23本的有20人,24本的有8人,所以中位数是23。
故答案是:23
21、.
【解析】
过B作BP⊥AD于P,BQ⊥AC于Q,依据∠BAD=∠BAC,即AB平分∠DAC,可得BP=BQ,进而得出BP=,AD=,S△ABD=AD×BP=,再根据△ABD∽△CBE,可得,即可得到S△CBE=.
【详解】
如图,过B作BP⊥AD于P,BQ⊥AC于Q,
由旋转可得,∠CAB=∠D,BD=BA=3,
∴∠D=∠BAD,
∴∠BAD=∠BAC,即AB平分∠DAC,
∴BP=BQ,
又∵Rt△ABC中,AB=3,BC=4,
∴AC=5,BQ=,
∴BP=,
∴Rt△ABP中,AP=,
∴AD=,
∴S△ABD=AD×BP=,
由旋转可得,∠ABD=∠CBE,DB=AB,EB=CB,
∴△ABD∽△CBE,
∴,即,
解得S△CBE=,
故答案为.
此题考查了旋转的性质、等腰三角形的性质以及相似三角形的判定与性质.此题注意掌握旋转前后图形的对应关系,注意相似三角形的面积之比等于相似比的平方.
22、
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.
【详解】
解:去分母得:,
解得:,
经检验是分式方程的解,
故答案为:
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
23、2
【解析】
解:∵四边形ABCD是菱形,AC=2,BD=,
∴∠ABO=∠CBO,AC⊥BD.
∵AO=1,BO=,
∴AB=2,
∴sin∠ABO==
∴∠ABO =30°,
∴∠ABC=∠BAC =60°.
由折叠的性质得,EF⊥BO,BE=EO,BF=FO,∠BEF=∠OEF,;
∵∠ABO=∠CBO,
∴BE=BF,
∴△BEF是等边三角形,
∴∠BEF=60°,
∴∠OEF=60°,
∴∠AEO=60°,
∵∠BAC =60°.
∴△AEO是等边三角形,,
∴AE=OE,
∴BE=AE,同理BF=FC,
∴EF是△ABC的中位线,
∴EF=AC=1,AE=OE=1.
同理CF=OF=1,
∴五边形AEFCD的周长为=1+1+1+2+2=2.
故答案为2.
二、解答题(本大题共3个小题,共30分)
24、(1)2;(2)7200元.
【解析】
分析:(1)连接BD.在Rt△ABD中可求得BD的长,由BD、CD、BC的长度关系可得△DBC为直角三角形,DC为斜边;由四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解;
(2)根据总费用=面积×单价解答即可.
详解:(1)连接BD.在Rt△ABD中,BD2=AB2+AD2=32+42=1.在△CBD中,CD2=132,BC2=122,而122+1=132,即BC2+BD2=CD2,∴∠DBC=90°,
S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC=×4×3+×12×5=2.
(2)需费用2×200=7200(元).
点睛:本题考查了勾股定理及逆定理的应用,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.
25、8
【解析】
试题分析:用二次根式的除法则运算,然后化简后合并即可;
试题解析:
5÷﹣3+2
=
=8.
26、(1);(2)按这种倒水方式,这1L水倒不完,见解析;(3)①x=;②
【解析】
(1)归纳总结得到一般性规律,写出即可;
(2)根据题意列出关系式,利用得出的规律化简即可;
(3)①方程变形后,利用得出的规律化简,计算即可求出解;
②原式利用得出的规律变形,计算即可求出值.
【详解】
(1)根据题意得:=-;
(2)前n次倒出的水总量为+++…+=1-+-+-+…+-=1-=,
∵<1,
∴按这种倒水方式,这1L水倒不完;
(3)①方程整理得:[(1-)+(-)+(-)+(-)]•=,
[(1-)]•=,
•=,
解得:x=,
经检验,x=是原方程的解,
∴原方程的解为x=;
②++…+
=
=(-)+(-)+(-)+…+[-]
=[-]
=.
本题考查规律型:数字的变化类,解分式方程,分式的混合运算,解答本题的关键是根据所给式子找出规律,并利用规律解答.
题号
一
二
三
四
五
总分
得分
批阅人
修造人
笔试成绩/分
面试成绩/分
甲
90
88
乙
84
92
丙
x
90
丁
88
86
服装统一
动作整齐
动作准确
八(1)班
80
84
87
八(2)班
97
78
80
八(3)班
90
78
85
相关试卷
这是一份2024-2025学年河南省辉县九年级数学第一学期开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省鹤壁市名校数学九年级第一学期开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省固始县数学九年级第一学期开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。