|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年河南省濮阳县区联考九上数学开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年河南省濮阳县区联考九上数学开学达标检测模拟试题【含答案】01
    2024-2025学年河南省濮阳县区联考九上数学开学达标检测模拟试题【含答案】02
    2024-2025学年河南省濮阳县区联考九上数学开学达标检测模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年河南省濮阳县区联考九上数学开学达标检测模拟试题【含答案】

    展开
    这是一份2024-2025学年河南省濮阳县区联考九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
    A.BE=DFB.AE=CFC.AF//CED.∠BAE=∠DCF
    2、(4分)如图所示,函数与在同一坐标系中,图象只能是下图中的( )
    A.B.C.D.
    3、(4分)如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是( )
    A.4B.2C.1D.
    4、(4分)如图,在正方形中,点是边上的一个动点(不与点,重合),的垂直平分线分别交,于点,若,则的值为( )
    A.B.C.D.
    5、(4分)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是( )
    A.2n﹣2B.2n﹣1C.2nD.2n+1
    6、(4分)在实数范围内,有意义,则x的取值范围是( )
    A.x≥0B.x≤0C.x>0D.x<0
    7、(4分)如图,在平行四边形中,,,,点是折线上的一个动点(不与、重合).则的面积的最大值是( )
    A.B.1C.D.
    8、(4分)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )
    A.中位数B.平均数C.方差D.极差
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)因式分解:3x3﹣12x=_____.
    10、(4分)抛物线有最_______点.
    11、(4分)已知方程的一个根为2,则________.
    12、(4分)如图,在正方形ABCD中,E是边CD上的点.若△ABE的面积为4.5,DE=1,则BE的长为________.
    13、(4分)已知关于x的方程=1的解是负值,则a的取值范围是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.
    (1)在点P(1,2),Q(2,-2),N(,-1)中,是“垂点”的点为 ;
    (2)点M(-4,m)是第三象限的“垂点”,直接写出m的值 ;
    (3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标 ;
    (4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG的边上存在“垂点”时,GE的最小值为 .
    15、(8分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:
    服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.
    (1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
    (2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?
    16、(8分)已知直线 y=kx+b(k≠0)过点 F(0,1),与抛物线 相交于B、C 两点
    (1)如图 1,当点 C 的横坐标为 1 时,求直线 BC 的解析式;
    (2)在(1)的条件下,点 M 是直线 BC 上一动点,过点 M 作 y 轴的平行线,与抛物线交于点 D, 是否存在这样的点 M,使得以 M、D、O、F 为顶点的四边形为平行四边形?若存在,求出点 M 的坐标;若不存在,请说明理由;
    (3)如图 2,设 B(m,n)(m<0),过点 E(0,-1)的直线 l∥x 轴,BR⊥l 于 R,CS⊥l 于 S,连接 FR、FS.试判断△ RFS 的形状,并说明理由.
    17、(10分)如图,点是等边内一点,,,将绕点顺时针方向旋转得到,连接,.
    (1)当时,判断的形状,并说明理由;
    (2)求的度数;
    (3)请你探究:当为多少度时,是等腰三角形?
    18、(10分)先化简,再求值:(x+2+)÷,其中x=2.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC=3,BC=5,则DF=_____.
    20、(4分)(2016浙江省衢州市)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=____________.
    21、(4分)化简:_____.
    22、(4分)已知:将直线y=x﹣1向上平移3个单位后得直线y=kx+b,则直线y=kx+b与x轴交点坐标为_____.
    23、(4分)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)阅读材料,解答问题:
    有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:的有理化因式是;1﹣的有理化因式是1+.
    分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘以分母的有理化因式,达到化去分母中根号的目的.如:
    ﹣1,.
    请根据上述材料,计算:的值.
    25、(10分)我县某中学开展“庆十一”爱国知识竞赛活动,九年级(1)、(2)班各选出名选手参加比赛,两个班选出的名选手的比赛成绩(满分为100分)如图所示。
    (1)根据图示填写如表:
    (2)请你计算九(1)和九(2)班的平均成绩各是多少分。
    (3)结合两班竞赛成绩的平均数和中位数,分析哪个班级的竞赛成绩较好
    (4)请计算九(1)、九(2)班的竞赛成绩的方差,并说明哪个班的成绩比较稳定?
    26、(12分)如图,菱形的对角线相交于点,,,相交于点.求证:四边形是矩形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.
    【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
    ∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;
    B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;
    C、如图,∵四边形ABCD是平行四边形,∴OA=OC,
    ∵AF//CE,∴∠FAO=∠ECO,
    又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,
    ∴AF CE,∴四边形AECF是平行四边形,故不符合题意;
    D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,
    ∴∠ABE=∠CDF,
    又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,
    ∴AE//CF,
    ∴AE CF,∴四边形AECF是平行四边形,故不符合题意,
    故选B.
    【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.
    2、B
    【解析】
    根据反比例函数和一次函数的图像特点解答即可.
    【详解】
    ∵k<0
    ∴反比例函数的图像只能在二、四象限,故排除答案A,D
    又一次函数的解析式为:(k<0)
    ∴一次函数的图像过二、三、四象限
    故答案选择B.
    本题考查的是反比例函数和一次函数的图像特征,反比例函数,当k>0时,函数图像过一、三象限,当k<0时,函数图像过二、四象限;一次函数y=kx+b,当k>0,b>0时,函数图像过一、二、三象限,当k>0,b<0时,函数图像过一、三、四象限,当k<0,b>0时,函数图像过一、二、四象限,当k<0,b<0时,函数图像过二、三、四象限.
    3、C
    【解析】
    根据正方形的性质可得OA=OB,∠OAE=∠OBF=45°,AC⊥BD,再利用ASA证明△AOE≌△BOF,从而可得△AOE的面积=△BOF的面积,进而可得四边形AFOE的面积=正方形ABCD的面积,问题即得解决.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,
    ∴∠AOB=90°,
    ∵OE⊥OF,
    ∴∠EOF=90°,
    ∴∠AOE=∠BOF,
    ∴△AOE≌△BOF(ASA),
    ∴△AOE的面积=△BOF的面积,
    ∴四边形AFOE的面积=正方形ABCD的面积=×22=1;
    故选C.
    本题主要考查了正方形的性质、全等三角形的判定与性质等知识,熟练掌握正方形的性质,证明三角形全等是解题的关键.
    4、C
    【解析】
    连接AF,EF,设DF=a,CF=6a,由勾股定理可求AF、EC的长,即可求出BE:EC的值.
    【详解】
    连接AF,EF,设DF=a,CF=6a,则BC=CD=7a,
    ∴AF=,
    ∵GF垂直平分AE,
    ∴EF=AF=,
    ∴EC==,
    ∴BE=7a-,
    ∴BE:CE=.
    故选C.
    本题考查了正方形的性质,勾股定理,利用勾股定理表示出相关线段的长是解答本题的关键.
    5、A
    【解析】
    连续使用勾股定理求直角边和斜边,然后再求面积,观察发现规律,即可正确作答.
    【详解】
    解:∵△ABC是边长为1的等腰直角三角形



    ∴第n个等腰直角三角形的面积是 ,
    故答案为A.
    本题的难点是运用勾股定理求直角三角形的直角边,同时观察、发现也是解答本题的关键.
    6、A
    【解析】
    由题意得,x≥0 .
    故选A.
    7、D
    【解析】
    分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.
    【详解】
    解:分三种情况:
    ①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,
    过A作AF⊥BC于F,
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠C+∠B=180°,
    ∵∠C=120°,
    ∴∠B=60°,
    Rt△ABF中,∠BAF=30°,
    ∴BF=AB=1,AF=,
    ∴此时△ABE的最大面积为:×4×=2;
    ②当E在CD上时,如图2,此时,△ABE的面积=S▱ABCD=×4×=2;
    ③当E在AD上时,E与D重合时,△ABE的面积最大,此时,△ABE的面积=2,
    综上,△ABE的面积的最大值是2;
    故选:D.
    本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.
    8、A
    【解析】
    根据中位数的定义解答可得.
    【详解】
    解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,
    所以将最高成绩写得更高了,计算结果不受影响的是中位数,
    故选A.
    本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3x(x+2)(x﹣2)
    【解析】
    先提公因式3x,然后利用平方差公式进行分解即可.
    【详解】
    3x3﹣12x
    =3x(x2﹣4)
    =3x(x+2)(x﹣2),
    故答案为3x(x+2)(x﹣2).
    本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
    10、低
    【解析】
    因为:,根据抛物线的开口向上可得答案.
    【详解】
    解:因为:,所以根据抛物线的开口向上,抛物线图像有最低点.
    故答案:低.
    本题考查的符号决定抛物线的图像的开口方向,掌握抛物线的图像特点是解题关键.
    11、
    【解析】
    把x=2代入原方程,得到一个关于k的方程,求解可得答案.
    【详解】
    解:把x=2代入方程3x2+kx-2=0得3×4+2k-2=0,
    解得k=-1.
    故答案为-1.
    本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    12、
    【解析】
    由S正方形ABCD=2S△ABE=9,先求出正方形的边长,再在Rt△BCE中,利用勾股定理即可解决问题.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=CD=BC,∠C=90°,
    ∵S正方形ABCD=2S△ABE=9,
    ∴AB=CD=BC=3,
    ∵DE=1,
    ∴EC=2,
    在Rt△BCE中,∵∠C=90°,BC=3,EC=2,
    ∴BE=
    故答案为:.
    本题考查正方形的性质、勾股定理等知识,解题的关键是S正方形ABCD=2S△ABE的应用,记住这个结论,属于中考常考题型.
    13、a<-2且a≠-4
    【解析】
    表示出分式方程的解,由分式方程的解为负值,确定出a的范围即可.
    【详解】
    解:方程=1,
    去分母得:2x-a=x+2,
    解得:x=a+2,
    由分式方程的解为负值,得到a+2<0,且a+2≠-2,
    解得:a<-2且a≠-4,
    故答案为:a<-2且a≠-4
    此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.
    三、解答题(本大题共5个小题,共48分)
    14、(1)Q;(2)-;(3)(-4,),(-,4);(4)1
    【解析】
    (1)根据“垂点”的意义直接判断即可得出结论;
    (2)根据“垂点”的意义建立方程即可得出结论;
    (3)根据“垂点”的意义和矩形的面积建立方程即可得出结论;
    (4)先确定出直线EF的解析式,利用“垂点”的意义建立方程,利用非负性即可确定出m的范围,即可得出结论.
    【详解】
    解:(1)∵P(1,2),∴1+2=3,1×2=2,
    ∵2≠3,∴点P不是“垂点”,
    ∵Q(2,﹣2),∴2+2=4,2×2=4,∴Q是“垂点”.
    ∵N(,﹣1),∴+1=×1=,
    ∵,∴点N不是“垂点”,
    故答案为Q;
    (2)∵点 M(﹣4,m)是第三象限的“垂点”,∴4+(﹣m)=4×(﹣m),∴m=﹣,
    故答案为﹣;
    (3)设“垂点”的坐标为(a,b),∴﹣a+b=﹣ab,
    ∵“垂点矩形”的面积为,∴﹣ab=.
    即:﹣a+b=﹣ab=,
    解得:a=﹣4,b=或a=﹣,b=4,∴“垂点”的坐标为(﹣4,)或(﹣,4),
    故答案为(﹣4,)或(﹣,4),.
    (4)设点E(m,0)(m>0),
    ∵四边形EFGH是正方形,∴F(0,m),y=﹣x+m.设边EF上的“垂点”的坐标为(a,﹣a+m),∴a+(﹣a+m)=a(﹣a+m)
    ∴a2﹣am=﹣m,∴(a﹣)2=≥0,∴m2﹣4m=m(m﹣4)≥0,
    ∵m>0,∴m﹣4≥0,∴m≥4,∴m的最小值为4,∴EG的最小值为2m=1,
    故答案为1.
    本题是四边形的综合题,主要考查了正方形的性质,矩形的面积公式,理解新定义和应用新定义的能力,解答本题的关键是用方程的思想解决问题.
    15、(1)75件(2)当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件
    【解析】
    (1)根据题意设购进甲种服装x件,可知购进甲需80x元,则乙为60(100-x)元,再根据二者之和不超过7500元,可列不等式,求解集可得结果;
    (2)根据要求设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,因此甲的利润为(120-80-a)元,乙的利润为(90-60-a)元,因此可得w=(10-a)x+3000,然后分情况讨论设计方案,①当0<a<10时,由一次函数的性质可判断当x=65时,利润最大;②当a=10时,w=3000,二者一样;③当10<a<20时,根据一次函数的性质可判断,当x=75时,利润最大.
    【详解】
    解:(1)设购进甲种服装x件,由题意可知:
    80x+60(100-x)≤7500
    解得:x≤75
    答:甲种服装最多购进75件.
    (2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75
    W=(40-a)x+30(100-x)=(10-a)x+3000
    方案1:当0<a<10时,10-a>0,w随x的增大而增大
    所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;
    方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;
    方案3:当10<a<20时,10-a<0,w随x的增大而减小
    所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.
    考点:一元一次不等式,一次函数的应用
    16、(1);(2)存在;M点坐标为:(-3,),,;(3)△RFS是直角三角形;证明见详解.
    【解析】
    (1)首先求出C的坐标,然后由C、F两点用待定系数法求解析式即可;
    (2)因为DM∥OF,要使以M、D、O、F为顶点的四边形为平行四边形,则DM=OF,设M(x,),则D(x,x2),表示出DM,分类讨论列方程求解;
    (3)根据勾股定理求出BR=BF,再由BR∥EF得到∠RFE=∠BFR,同理可得∠EFS=∠CFS,所以∠RFS=∠BFC=90°,所以△RFS是直角三角形.
    【详解】
    解:(1)因为点C在抛物线上,所以C(1,),
    又∵直线BC过C、F两点,
    故得方程组:
    解之,得,
    所以直线BC的解析式为:;
    (2)存在;理由如下:
    要使以M、D、O、F为顶点的四边形为平行四边形,则MD=OF,如图1所示,
    设M(x,),则D(x,x2),
    ∵MD∥y轴,
    ∴,
    由MD=OF,可得:;
    ①当时,
    解得:x1=0(舍)或x1=-3,
    所以M(-3,);
    ②当时,
    解得:,
    所以M或M,
    综上所述,存在这样的点M,使以M、D、O、F为顶点的四边形为平行四边形,
    M点坐标为:(-3,),,;
    (3)△RFS是直角三角形;理由如下:
    过点F作FT⊥BR于点T,如图2所示,
    ∵点B(m,n)在抛物线上,
    ∴m2=4n,
    在Rt△BTF中,

    ∵n>0,
    ∴BF=n+1,
    又∵BR=n+1,
    ∴BF=BR.
    ∴∠BRF=∠BFR,
    又∵BR⊥l,EF⊥l,
    ∴BR∥EF,
    ∴∠BRF=∠RFE,
    ∴∠RFE=∠BFR,
    同理可得∠EFS=∠CFS,
    ∴∠RFS=∠BFC=90°,
    ∴△RFS是直角三角形.
    本题主要考查了待定系数法求解析式,平行四边形的判定,平行线的性质,勾股定理以及分类讨论和数形结合等数学思想.解题的关键是掌握待定系数法求解析式,以及学会运用分类讨论和数形结合等数学思想去解题.
    17、(1)为直角三角形,理由见解析;(2);(3)当为或或时,为等腰三角形.
    【解析】
    (1)由旋转可以得出和均为等边三角形 ,再根据求出,进而可得为直角三角形;
    (2)因为进而求得,根据,即可求出求的度数;
    (3)由条件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,当∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA时分别求出a的值即可.
    【详解】
    解:(1)为直角三角形,理由如下:
    绕顺时针旋转得到,
    和均为等边三角形,,,,

    为直角三角形;
    (2)由(1)知:,




    (3)∵∠AOB=110°,∠BOC=α
    ∴∠AOC=250°-a.
    ∵△OCD是等边三角形,
    ∴∠DOC=∠ODC=60°,
    ∴∠ADO=a-60°,∠AOD=190°-a,
    当∠DAO=∠DOA时,
    2(190°-a)+a-60°=180°,
    解得:a=140°
    当∠AOD=ADO时,
    190°-a=a-60°,
    解得:a=125°,
    当∠OAD=∠ODA时,
    190°-a+2(a-60°)=180°,
    解得:a=110°
    ∴α=110°,α=140°,α=125°.
    本题考查了等边三角形的判定与性质的运用,旋转的性质的运用,直角三角形的判定,全等三角形的判定及性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.
    18、,4-2.
    【解析】
    【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把x的值代入进行计算即可得.
    【详解】原式=()÷
    =
    =
    =,
    当x=2时,原式===2(2-)=4-2.
    【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.
    【详解】
    解:∵D、E分别为AB、AC的中点,
    ∴DE=BC=2.5,
    ∵AF⊥CF,E为AC的中点,
    ∴EF=AC=1.5,
    ∴DF=DE﹣EF=1,
    故答案为:1.
    本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    20、4或﹣1.
    【解析】
    根据题意画图如下:
    以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣1,1),则x=4或﹣1;故答案为4或﹣1.
    21、
    【解析】
    算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.
    【详解】
    8的算术平方根为.∴
    故答案为:.
    此题考查算术平方根的定义,解题关键在于掌握其定义.
    22、(﹣4,0).
    【解析】
    根据平行直线的解析式的k值相等,向上平移3个单位,横坐标不变,纵坐标加3,写出平移后的解析式,然后令y=0,即可得解.
    【详解】
    ∵直线y=x﹣1向上平移3个单位后得直线y=kx+b,
    ∴直线y=kx+b的解析式为:y=x+2,
    令y=0,则0=x+2,
    解得:x=﹣4,
    ∴直线y=kx+b与x轴的交点坐标为(﹣4,0).
    故答案为:(﹣4,0).
    本题主要考查直线平移的规律以及直线与x轴交点的坐标,掌握平行直线的解析式的k值相等,是解题的关键.
    23、1
    【解析】
    求出x1,x2即可解答.
    【详解】
    解:∵x2﹣x=0,
    ∴x(x﹣1)=0,
    ∵x1<x2,
    ∴解得:x1=0,x2=1,
    则x2﹣x1=1﹣0=1.
    故答案为:1.
    本题考查一元二次方程的根求解,按照固定过程求解即可,较为简单.
    二、解答题(本大题共3个小题,共30分)
    24、
    【解析】
    分别把每个加数分母有理化,再合并即可得到答案.
    【详解】
    解:


    本题考查的是分母有理化,即二次根式的除法运算,掌握分母有理化的方法是解题的关键.
    25、(1);(2)甲:85,乙:85;(3)九(1)班成绩较好;(4)九(1)班成绩比较稳定.
    【解析】
    (1)观察图分别写出九(1)班和九(2)班5名选手的比赛成绩,然后根据中位数和众数的定义求解即可;(2)根据平均数公式计算即可;(3)在平均数相同的情况下,中位数较高的成绩较好;(4)先根据方差公式分别计算两个班比赛成绩的方差,再根据方差的意义判断即可.
    【详解】
    由图可知:九(1)班5位同学的成绩分别为:75,80,85,85,100,所以中位数为85,众数为85;九(2)班5位同学的成绩分别为:70,100,100,75,80,排序为:70,75,80,100,100,所以中位数为80,众数为100,即填表如下:
    (2)九(1)班的平均成绩为(分),
    九(2)班的平均成绩为(分);
    (3)因为两个班级的平均数都相同,九(1)班的中位数较高,所以在平均数相同的情况下中位数较高的九(1)班成绩较好;
    (4);
    因为
    所以九(1)班成绩比较稳定.
    本题考查了平均数、中位数、众数和方差的意义即运用.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    26、见解析.
    【解析】
    首先判定四边形OAEB是平行四边形,再由菱形的性质得出∠AOB=90°,从而判定四边形OAEB是矩形.
    【详解】
    证明:∵,,
    ∴四边形是平行四边形,
    又∵四边形是菱形,
    ∴,
    ∴,
    ∴平行四边形是矩形.
    ∴四边形是矩形
    本题考查了矩形的判定,菱形的性质, 掌握矩形的判定和菱形的性质是解题的关键.
    题号





    总分
    得分
    批阅人
    班级
    中位数(分)
    众数(分)
    九(1)

    85
    九(2)
    80

    班级
    中位数(分)
    众数(分)
    九(1)
    85
    85
    九(2)
    80
    100
    相关试卷

    2024-2025学年河南省鲁山、舞钢数学九上开学联考模拟试题【含答案】: 这是一份2024-2025学年河南省鲁山、舞钢数学九上开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年河北省石家庄市八校联考数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年河北省石家庄市八校联考数学九上开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,四象限;,解答题等内容,欢迎下载使用。

    2024-2025学年河北省高阳县联考数学九上开学达标检测试题【含答案】: 这是一份2024-2025学年河北省高阳县联考数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map