2024-2025学年河南省商丘市虞城县九上数学开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,分别是的边上的点,将四边形沿翻折,得到交于点则的周长为( )
A.B.C.D.
2、(4分)下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()
A.18cm2B.36cm2C.72cm2D.108cm2
3、(4分)如图,在4×4的正方形网格中,△ABC的顶点都在格点上,下列结论错误的是( )
A.AB=5B.∠C=90°C.AC=2D.∠A=30°
4、(4分)某校规定学生的数学学期评定成绩满分为100,其中平时成绩占50%,期中考试成绩占20%,期末考试成绩占30%.小红的三项成绩(百分制)依次是86、70、90,小红这学期的数学学期评定成绩是( )
A.90B.86C.84D.82
5、(4分)下列计算正确的是( )
A.+=B.÷=2C.()-1=D.(-1)2=2
6、(4分)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是( )
A.B.
C.D.
7、(4分)如图,DE是的中位线,则与四边形DBCE的面积之比是( )
A.B.C.D.
8、(4分)下列数据中不能作为直角三角形的三边长的是( )
A.1,,2B.7,24,25C..D.1,,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,对角线与相交于点,是边的中点,连结.若,,则的度数为_______.
10、(4分)一次数学测验中,某小组七位同学的成绩分别是:90,85,90,1,90,85,1.则这七个数据的众数是_____.
11、(4分)如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.
12、(4分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.
13、(4分)已知是一元二次方程的两实根,则代数式_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.
15、(8分)化简计算:
(1)
(2)
16、(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.
17、(10分)如图,G是线段AB上一点,AC和DG相交于点E.
(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)
(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.
18、(10分)已知:一次函数y=(3﹣m)x+m﹣1.
(1)若一次函数的图象过原点,求实数m的值;
(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于_____.
20、(4分)如图,在正方形ABCD的外侧作等边△DEC,则∠AEB=_________度.
21、(4分)如图,在平面直角坐标系中,矩形纸片OABC的顶点A,C分别在x轴,y轴的正半轴上,将纸片沿过点C的直线翻折,使点B恰好落在x轴上的点B′处,折痕交AB于点D.若OC=9,,则折痕CD所在直线的解析式为____.
22、(4分)如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是 cm.
23、(4分)如图,在平面直角坐标系xOy中,直线,分别是函数和的图象,则可以估计关于x的不等式的解集为_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.
(1)试求出纸箱中蓝色球的个数;
(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.
25、(10分)已知,,满足等式.
(1)求、、的值;
(2)判断以、、为边能否构成三角形?若能构成三角形,此三角形是什么形状的三角形?若不能,请说明理由;
26、(12分)用配方法解方程:x2-6x+5=0
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEG=∠EGF,
∵将四边形EFCD沿EF翻折,得到EFC′D′,
∴∠GEF=∠DEF=60°,
∴∠AEG=60°,
∴∠EGF=60°,
∴△EGF是等边三角形,
∴EG=FG=EF=4,
∴△GEF的周长=4×3=12,
故选:C.
本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定与性质等知识;熟练掌握翻折变换的性质是解决问题的关键.
2、D
【解析】
根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.
【详解】
根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.
即A、B、C、D、E、F的面积之和为3个G的面积.
∵M的面积是61=36 cm1,
∴A、B、C、D、E、F的面积之和为36×3=108 cm1.
故选D.
考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.
3、D
【解析】
首先根据每个小正方形的边长为1,结合勾股定理求出AB、AC、BC的长,进而判断A、C的正误;再判断较短的两边的平方和与较长边的平方是否相等,进而可判断B的正误;在上步提示的基础上,判断BC与AB是否存在二倍关系,进而即可判断D的正误.
【详解】
∵每个小正方形的边长为1,
根据勾股定理可得:AB=5,AC=2,BC=.
故A、C正确;
∵2+(2)2=52,
∴△ABC是直角三角形,
∴∠C=90°.
故B正确;
∵∠C=90°,AC=2BC,而非AB=2BC,
∴∠A≠30°.
故D错误.
故选D.
本题考查的是三角形,熟练掌握三角形是解题的关键.
4、C
【解析】
根据加权平均数的计算方法列出算式,再进行计算即可得出答案.
【详解】
解:小红这学期的数学学期评定成绩是:86×50%+70×20%+90×30%=84(分);
故选:C.
本题考查的是加权平均数的求法.熟记公式是解决本题的关键.
5、B
【解析】
解:与不能合并,所以A选项错误;
B.原式==2,所以B选项正确;
C.原式=,所以C选项错误;
D.原式==,所以D选项错误.
故选B.
6、C
【解析】
根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.
【详解】
解:分四种情况:
①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;
②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;
③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C选项符合;
④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.
故选C.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
7、B
【解析】
首先根据DE是△ABC的中位线,可得△ADE∽△ABC,且DE:BC=1:2;然后根据相似三角形面积的比等于相似比的平方,求出△ADE与△ABC的面积之比是多少,进而求出△ADE与四边形DBCE的面积之比是多少即可.
【详解】
解:∵DE是△ABC的中位线,
∴△ADE∽△ABC,且DE:BC=1:2,
∴△ADE与△ABC的面积之比是1:4,
∴△ADE与四边形DBCE的面积之比是1:1.
故选:B.
(1)此题主要考查了三角形的中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.
(2)此题还考查了相似三角形的面积的比的求法,要熟练掌握,解答此题的关键是要明确:相似三角形面积的比等于相似比的平方.
8、C
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.
【详解】
解:A.,符合勾股定理的逆定理,故不符合题意;
B. 72+242=252,符合勾股定理的逆定理,故不符合题意;
C.,不符合勾股定理的逆定理,故符合题意;
D.,符合勾股定理的逆定理,故不符合题意.
故选:C.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、40°
【解析】
直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.
【详解】
解:,,
,
对角线与相交于点,是边的中点,
是的中位线,
,
.
故答案为:.
此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出是的中位线是解题关键.
10、2
【解析】分析:众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此即可求解.
详解:依题意得2出现了3次,次数最多,
故这组数据的众数是2.
故答案为2
点睛:此题考查了众数的定义,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.
11、3.
【解析】
运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.
【详解】
解:∵等腰直角三角形ABC,等腰直角三角形CDE
∴∠ECD=45°,∠ACB=45°
即AC⊥EC,且CE∥BF
当AG⊥BF,时AG最小,
所以由∵AF=AE
∴AG=CG=AC=3
故答案为3
本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.
12、1.
【解析】
∵AB=5,AD=12,
∴根据矩形的性质和勾股定理,得AC=13.
∵BO为Rt△ABC斜边上的中线
∴BO=6.5
∵O是AC的中点,M是AD的中点,
∴OM是△ACD的中位线
∴OM=2.5
∴四边形ABOM的周长为:6.5+2.5+6+5=1
故答案为1
13、
【解析】
根据韦达定理得,再代入原式求解即可.
【详解】
∵是一元二次方程的两实根
∴
∴
故答案为:.
本题考查了一元二次方程根与系数的问题,掌握韦达定理是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、猜想:BE∥DF,BE=DF;证明见解析.
【解析】试题分析:利用平行四边形的性质和平行线的性质可以得到相等的线段和相等的角,从而可以证明△BCE≌△DAF,进而证得结论.
试题解析:猜想:BE∥DF且BE=DF.
证明:∵四边形ABCD是平行四边形,
∴CB=AD,CB∥AD,
∴∠BCE=∠DAF,
在△BCE和△DAF
,
∴△BCE≌△DAF,
∴BE=DF,∠BEC=∠DFA,
∴BE∥DF,
即BE∥DF且BE=DF.
考点:1.平行四边形的性质;2.全等三角形的判定与性质.
15、(1);(2)
【解析】
(1)根据分式的加法法则,先通分然后再相加计算即可;
(2)根据分式混合运算的运算顺序及运算法则进行计算即可.
【详解】
解:(1)原式
;
(2)原式
.
本题考查分式的计算,掌握各运算法则及通分、约分是解题的关键.
16、(1)见解析;(2)见解析;(3)P(2,0).
【解析】
(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;
(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;
(3)找出A的对称点A′,连接BA′,与x轴交点即为P.
【详解】
解:(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接,如图所示:
(2)找出点A、B、C关于原点O的对称点的位置,然后顺次连接,如图所示:
(3)找出A的对称点A′,连接BA′,与x轴交点即为P,
,
由题知,A(1,1),B(4,2),
∴A′(1,-1),
设A′B的解析式为y=kx+b,把B(4,2),A′(1,-1)代入y=kx+b中,
则,
解得:,
∴y=x-2,
当y=0时,x=2,
则P点坐标为(2,0).
本题考查了利用平移变换及原点对称作图及最短路线问题;熟练掌握网格结构准确找出对应点的位置和一次函数知识是解题的关键.
17、(1)见解析;(2)见解析.
【解析】
(1)根据角平分线的作图方法作图即可;
(2)由题意易证△ADE≌△CBF推出DE=BF.
【详解】
(1)解:以B为圆心、适当长为半径画弧,交AB、BC于M、N两点,分别以M、N为圆心、大于MN长为半径画弧,两弧相交于点P,过B、P作射线BF交AC于F.
(2)证明如下:∵AD∥BC,∴∠DAC=∠C.
∵BF平分∠ABC,∴∠ABC=2∠FBC,
又∵∠ABC=2∠ADG,∴∠D=∠FBC,
在△ADE与△CBF中,,
∴△ADE≌△CBF(ASA),
∴DE=BF.
本题考查的是全等三角形的判定定理以及基本作图的有关知识,难度一般.
18、(1)m=1;(2)3<m<1
【解析】
(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;
(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m的一元一次不等式组,解之即可得出实数m的取值范围.
【详解】
(1)∵一次函数y=(3﹣m)x+m﹣1的图象过原点,
∴,
解得:m=1.
(2)∵一次函数y=(3﹣m)x+m﹣1的图象经过第二、三、四象限,
∴,
解得:3<m<1.
本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
作PE⊥OA于E,根据三角形的外角的性质得到∠ACP=30°,根据直角三角形的性质得到PE=PC=1,根据角平分线的性质解答即可.
【详解】
作PE⊥OA于E,
∵CP∥OB,
∴∠OPC=∠POD,
∵P是∠AOB平分线上一点,
∴∠POA=∠POD=15°,
∴∠ACP=∠OPC+∠POA=30°,
∴PE=PC=1,
∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,
∴PD=PE=1,
故答案为:1.
本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
20、1
【解析】
根据正方形和等边三角形的性质证明△ADE是等腰三角形,由此可以求出∠DEA,同理求出∠CEB即可解决问题.
【详解】
解:∵四边形ABCD是正方形,
∴∠ADC=90°,CD=AD,
∵△DCE是正三角形,
∴DE=DC=AD,∠CDE=∠DEC=60°,
∴△ADE是等腰三角形,∠ADE=90°+60°=150°,
∴∠DAE=∠DEA==15°,
同理可得:∠CBE=∠CEB=15°,
∴∠AEB=∠DEC―∠DEA―∠CEB=60°-15°-15°=1°,
故答案为:1.
此题主要考查了正方形和等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,灵活运用相关性质定理是解题的关键.
21、y=x+9.
【解析】
根据OC=9,先求出BC的长,继而根据折叠的性质以及勾股定理的性质求出OB′的长,求得AB′的长,设AD=m,则B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的长,进而求得点D的坐标,再利用待定系数法进行求解即可.
【详解】
∵OC=9,,
∴BC=15,
∵四边形OABC是矩形,
∴AB=OC=9,OA=BC=15,∠COA=∠OAB=90°,
∴C(0,9),
∵折叠,
∴B′C=BC=15,B′D=BD,
在Rt△COB′中,OB′==12,
∴AB′=15-12=3,
设AD=m,则B′D=BD=9-m,
Rt△AB′D中,AD2+B′A2=B′D2,
即m2+32=(9-m)2,
解得m=4,
∴D(15,4)
设CD所在直线解析式为y=kx+b,
把C、D两点坐标分别代入得:,
解得:,
∴CD所在直线解析式为y=x+9,
故答案为:y=x+9.
本题考查了矩形的性质,折叠的性质,勾股定理,待定系数法求一次函数的解析式,求出点D的坐标是解本题的关键.
22、.
【解析】
试题分析:点F与点C重合时,折痕EF最大,
由翻折的性质得,BC=B′C=10cm,
在Rt△B′DC中,B′D==8cm,
∴AB′=AD﹣B′D=10﹣8=2cm,
设BE=x,则B′E=BE=x,
AE=AB﹣BE=6﹣x,
在Rt△AB′E中,AE2+AB′2=B′E2,
即(6﹣x)2+22=x2,
解得x=,
在Rt△BEF中,EF=cm.
故答案是.
考点:翻折变换(折叠问题).
23、x <-2
【解析】
【分析】根据函数的图象进行分析,当l1的图象在l2的上方时,x的取值范围就是不等式的解集.
【详解】由函数图象可知,当x<-2时,l1的图象在l2的上方.
所以,的解集为x<-2.
故答案为x<-2
【点睛】本题考核知识点:一次函数与不等式.解题关键点:从函数图象分析函数值的大小.
二、解答题(本大题共3个小题,共30分)
24、(1)50;(2)2
【解析】
(1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;
(2)因为摸到红球的频率在0.5附近波动,所以摸出红球的概率为0.5,再设出红球的个数,根据概率公式列方程解答即可.
【详解】
(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.1)=50(个)
(2)设小明放入红球x个.根据题意得:
解得:x=2(个).
经检验:x=2是所列方程的根.
答:小明放入的红球的个数为2.
本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.
25、 (1) a=,b=5,c=;(2)可以构成三角形;直角三角形;理由见解析
【解析】
(1)根据二次根式的非负性解出a、b、c的值即可.
(2)根据勾股定理逆定理判断即可.
【详解】
(1) ,
由二次根式的非负性可知:a=,b=5,c=.
(2)∵a+b>c>b-a,满足三边关系,
∴a、b、c能构成三角形,
∵a2=7,b2=25,c2=32,可得a2+b2=c2,
∴三角形为直角三角形.
本题考查二次根式的非负性和勾股定理逆定理,关键在于熟练掌握相关性质.
26、x1=5,x2=1.
【解析】
首先移项,把方程变形为x2-6x=-5的形式,方程两边同时加上一次项系数的一半,则方程的左边是完全平方式,右边是常数,然后利用直接开平方法即可求解.
【详解】
x2-6x+5=0
移项得,x2-6x=-5
x2-6x+9=-5+9,
∴(x-3)2=4,
∴x-3=±2,
解得x1=5,x2=1.
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年河南省叶县九上数学开学综合测试模拟试题【含答案】: 这是一份2024-2025学年河南省叶县九上数学开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年河南省数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省商丘市永城市数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年河南省商丘市永城市数学九年级第一学期开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。